摘要:
在自动驾驶安全性的研究和应用中,测试里程长、暴露危险场景单一的问题使自动驾驶安全性能的提升受到限制。使用对抗性场景进行测试被认为是解决上述问题的重要手段,然而,现有研究采用通用的优化算法作为框架,将大量计算资源浪费在对参数空间的探索过程中,效率低下。在计算成本的约束下,这些算法甚至无法在更复杂的环境中测试出足够多、足够丰富的失效样本。复杂环境中的对抗性场景测试面临三大挑战:信息匮乏;对抗性样本在庞大的参数空间中稀疏分布;搜索过程中探索与利用难以平衡。该文从这三大挑战出发,提出一种高效的对抗性场景测试框架,通过代理模型来获取更多关于参数空间的信息,精选小样本,以打破庞大空间中稀疏事件的制约,对未知区域和对抗性样本附近的目标进行有针对性的搜索和更新,以实现探索和利用的平衡。实验证明,该文提出方法的搜索效率是随机采样的 4 倍,与通用遗传算法相比,效率提升一倍以上,在有限的仿真测试次数下,生成了更多容易使被测自动驾驶系统失效的对抗性测试用例。特别地,该文提出的方法能够找出许多离群的对抗性样本,揭示出现有算法无法识别的失效模式。此外,该文提出的方法能够快速、全面地定位出被测算法的脆弱场景,为自动驾驶算法的测试验证、迭代升级提供支持。