
第 6 卷 第 3 期

2017 年 5 月

集 成 技 术

JOURNAL OF INTEGRATION TECHNOLOGY

Vol. 6 No. 3

May 2017

收稿日期：2016-12-14 修回日期：2017-04-13
基金项目：中国科学院国际人才计划项目(2016VTA024、2017VTB0003)； 国家重点基础研究发展计划(973 计划)项目(2014CB340700)
作者简介：P. S. Thiagarajan, 访问教授，研究方向为系统生物学、模型检测等；杨绍发(通讯作者)，副教授，研究方向为模型检测、计算机器人

学等，E-mail：yangsf@ios.ac.cn；王义，教授，研究方向为实时与嵌入式系统、模型检测等。

实时任务准入控制器的自动合成

P. S. Thiagarajan1 杨绍发2 王 义3

1(美国哈佛大学哈佛医学院 系统药理学实验室 波士顿 MA02115)
2(中国科学院软件研究所 计算机科学国家重点实验室 北京 100190)

3(瑞典乌普萨拉大学信息技术系 乌普萨拉 75105)

摘  要  在许多实时系统中，同一个计算平台上往往既有硬实时关键计算任务又有软实时非关键计算

任务。硬实时任务必须在规定时间内完成，否则将导致系统错乱或崩溃等严重后果。而软实时任务若

没有在规定时间内完成，虽会影响系统性能，但不会造成重大后果。为确保每个硬实时任务均在其规

定时间内完成，在某些情况下需要拒绝一些软实时任务进入任务队列。文章提出了一种基于控制器自

动合成策略的解决方案，通过所设计的准入控制器，对系统产生的每一个新任务自动决定是否准其进

入任务队列。准入控制器必须使得所有被准入的任务均在规定时间内完成，并且决策序列满足以线性

时态逻辑描述的服务质量要求。文章的主要贡献是提出了判定是否存在准入控制器的算法，该算法能

在判定结果为真时构造出一个以有限状态时间自动机表达的准入控制器。

关键词  实时系统；任务调度；控制器合成；自动机理论

中图分类号  TP 3-0 TP 31 文献标志码  A

Synthesis of Timed Admission Controllers
P. S. Thiagarajan1 YANG Shaofa2 WANG Yi3

1(Laboratory of Systems Pharmacology, Harvard Medical School, Harvard University, Boston MA 02115, USA)
2(State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China)

3(Department of Information Technology, Uppsala University, Uppsala 75105, Sweden)

Abstract In many real-time computing environments, there are some tasks that are time-critical while
others are not. To ensure that every critical task can be completed before its deadline, it is necessary to reject
some non-critical tasks to entry into the ready queue. We address this problem in the framework of controller
synthesis. Our goal is to come up with an admission controller which admits or rejects a task request. With
such a controller, no admitted tasks will miss their deadline and the admitted patterns of task releases satisfy
a quality-of-service constraint in the form of a linear time temporal logic specification. We prove that it is
decidable to determine if such an admission controller exists. Furthermore, if the answer is positive, it is
possible to effectively construct a controller in the form of a finite timed controller.

Keywords real-time systems; scheduling; controller synthesis; automata theory

集 成 技 术 2017 年 2

1 Introduction

In real-time systems, it is important to schedule
tasks so that all time-critical tasks are completed
before their deadlines. Classical schedulability
analysis techniques[1] make strong assumptions
about the temporal arrival patterns of the tasks. To
overcome this limitation, a model was suggested
in Fersman et al’s report[2] (hereafter Fersman’s
report for brevity), where timed automata are used
to describe task arrival patterns. It was shown that,
in a uniprocessor setting, one can decide whether all
tasks can be scheduled to meet their deadlines when
the task arrivals are described by a timed automaton.
As surveyed in Stigge’s report[3], this model is the
most expressive among existing graph-based real-
time task models. Any existing task model can be
represented in the timed automata based task model
of Fersman’s report[2].
 In many real-time settings, the task arrival
patterns will be such that some tasks will miss their
deadlines. One method, as noted in Liu’s report[4],
to deal with this is to subject each new task instance
to an acceptance test and admit it if the new ready
queue resulting from adding this task instance is still
schedulable. Such an approach is not satisfactory
because a critical task may fail to get into the ready
queue. Hence it is useful to consider designing more
flexible admission policies.
 In this paper, we study this problem from the
perspective of controller synthesis. Using a timed
automaton, we model the real-time setting as an
open system. This open system, called a plant in this
context, will have environment states from which the
environment can make uncontrollable timed moves
to release tasks. Each such uncontrollable action,

leading to a system state, will then be immediately
followed by an urgent pair of controllable actions:
one of them, admitting the just released task instance
and putting it into the ready queue and the other one
rejecting it. We study the problem of constructing
a strategy for choosing the controllable actions so
that the admitted task instances, no matter what the
environment does, can all be scheduled without
missing their deadlines. A trivially safe policy would
be to reject all task instances. To prevent this, we
also require that the admitted sequences of plant
transitions should satisfy an LTL (Linear Time
Temporal Logic) specification that will typically
demand some liveness and fairness properties.
 We note that our framework is expressive enough
to distinguish between hard real-time tasks—by
specifying they must always be admitted—and
soft tasks. Further, we can impose QoS (Quality of
Service) requirements on the soft tasks by specifying
fairness requirements such as:“Along any run, if
(the soft task) is released infinitely often, then
must also be admitted infinitely often”. For ease of
presentation, however, we do not impose a syntactic
distinction between hard and soft tasks.
 As in Fersman’s report[2], we assume a uni-
processor computing resource for the sake of
convenience. The EDF (Earliest Deadline First)
scheduling policy with preemption is known to be
optimal in this setting[1]. In other words, if a task set
is schedulable at all, then it is schedulable under EDF
with preemption. Hence we assume this scheduling
policy. We then find that, in this setting, given a
plant in the form of a timed automaton and an LTL
specification, one can effectively determine whether
there is a winning strategy for admitting tasks so
that all admitted tasks are schedulable and all the

P. S. Thiagarajan，等：实时任务准入控制器的自动合成3 期 3

runs permitted by the strategy meet the given LTL
specification. We also find that whenever there is a
winning strategy, there is in fact a winning strategy
which can be synthesized as a finite timed automaton
called the admission controller. Consequently,
the controlled behavior obtained via the parallel
composition of the plant and the controller will
admit only schedulable ready queues and satisfy the
LTL specification.
 Our work may be viewed as an extension to an
open system framework of the results reported in
Fersman’s report[2]. As discussed already, the current
setting has a natural motivation and it is a pleasing
fact that techniques from the controller synthesis
domain and timed-automata-based schedulability
analysis techniques can be combined in a natural
manner to solve the synthesis problem at hand. In
the literature, a number of studies[5-9] are available
regarding controller synthesis in a timed setting.
The key motivation of these studies is to extend
classical controller synthesis results for discrete
event systems[10-12] to a timed setting. In comparison,
though we use the language and techniques of (timed)
controller synthesis, our motivation is very different.
In the present setting, our admission controller will
not have any clock variables of its own. It will be
interesting to endow the controller with its own
clocks and granularity and study our controller
synthesis problem along the lines of timed control[7,8].
 A second related line of work is to derive a
schedule for a real-time application, given the
timed model of the application and a set of resource
constraints[13-19] in fact carrying out the work using
the controller synthesis paradigm. However, the
emphasis in this line of work is to restrict the timed
behaviors of the application so as to meet, in a

timely fashion, access to shared resources. It will
be interesting to extend our work along this line, to
multi-processor settings accompanied by resource
access protocols for shared resources.
 A recent trend in real-time systems is the
scheduling of real-time tasks in mixed-criticality
frameworks. The key characteristics is, instead of
one fixed computation time, a task can be associated
with several worst-case execution times, each
corresponding to an estimate at a different critical
level. A comprehensive review of work in this
area can be found in Burns’ report[20]. It will be
worthwhile to extend our synthesis results to the
scheduling of mixed-criticality tasks.
 In section 2, we formulate our plant model and
define its operational semantics. In section 3, we
specify the admission controller synthesis problem
and state the our main result. The proof of the main
result is presented in section 4 and the prospects
for extending the current work is discussed in the
concluding section 5.

2 The plant model

We first recall that a timed automaton , is a
structure where Q is a finite set of
locations and is the initial location; X is a
finite set of clocks and is a finite set of events.

 i s t h e t r a n s i t i o n

relation. Here is the set of clock constraints
over X. A clock constraint over X is a finite
conjunction of basic constraints of the form

 where . As
usual is the set of natural numbers. In what
follows, and denote the set of non-negative
reals and positive reals, respectively. The difference

集 成 技 术 2017 年 4

a clock region. We have ,
where and are the least sets satisfying the
following:
 (1) ;
 (2) If and there exists

 where , then

and .
2.1 The model

Next we recall how task arrival patterns in a real time
environment can be modeled using timed automata
as proposed in Fersman’s report[2]. The basic idea is
to associate a task with each location. Whenever a
location is entered, an instance of the task associated
with the location is supposed to be released. Here,
it will be convenient to associate tasks with the
transitions rather than with the locations. We also
wish to highlight that we are dealing with an open
system model—called a plant in this context—of
task arrival patterns on which an admission control
policy can be imposed. Formally, we define a plant

 to be a structure ,
where:
 (1) Qe and Qs are disjoint finite nonempty sets of
environment states and system states, respectively.
 (2) is the initial state.
 (3) is a finite set of task types. The functions C,
D: associate with each task type a computation
time and a relative deadline, respectively. Further,
for each , .
 (4) X is a finite set of clocks.

 (5) is a set of
environment transitions. For each system state , there
exists a unique environment state q and a unique
environment transition of the form .
 (6) i s a s e t o f sys t em
transitions. For each system state , there exists a

constraints will be needed later to capture
the behavior of the ready queue.
 A clock valuation V over X is a function . For

, is the clock valuation
for . For , is the clock valuation
which maps every clock in Y to zero and agrees

with V on other clocks. The notation means V
satisfies the clock constraint and is defined in the
obvious way. The timed behavior of is given by the

transition system

where and are the least sets satisfying the
following: (1) , where for
every clock variable x; and (2) if and

there exists and such that ,

then and , where

.
 It is well-known[21] that we can take a quotient of

 in the form of a finite transition system, called
the region automaton of . For , let cx
be the maximum constant which appears in basic
constraints (of transition guards of) of the form

, where . Two clock
valuations V, are region-equivalent, denoted

, iff the following hold:
 (1) For each , either
or . Further, in the former case,

 iff , where is the

fractional part of v;
 (2) For each such that
a n d , w e h a v e

 iff ;
 (3) For every basic constraint which
appears in (transition guards of) , iff .
 A clock region is an equivalence class of clock
valuations. A region is a pair , where and r is

P. S. Thiagarajan，等：实时任务准入控制器的自动合成3 期 5

unique environment state q and exactly two system

transitions of the form and .
 From now on, we fix a plant defined above.
Informally, the plant model consists of a timed
automaton whose events are interpreted as tasks,
in case they are associated with environment
transitions. For system transitions, we allow only
the events {0, 1} which will be used to capture the
decisions made by the controller. The semantics of
the plant will implicitly impose a zero-delay on the
system states. In other words, as soon as a system
state is entered, the controller will make the decision
to either accept the task that has just been released
by the environment, this is captured by the 1-labeled
transition going out of the system state. On the other
hand, the 0-labeled transition going out of a system
state models the decision to reject the just released
task. We could have assigned a special clock variable
to capture the immediacy of these transitions, but
we have not done so for convenience. As mentioned
above, the decision as to whether a just released
task is to be admitted or not is made as soon as the
task is released by the environment. Thus system
moves come in pairs and each such pair is uniquely
associated with an environment move. Further, the
environment is oblivious to the admission policy
being followed by the system. This explains the
restrictions placed on the structure of the transitions.
In what follows, we shall often denote both and

 as . An example of a plant is shown in Fig. 1.

2.2 The ready queue states

The semantics of is to be understood with respect
to a scheduling policy. Here we work with the simple
framework consisting of a single processor. The
scheduling policy we shall assume is EDF (Earliest
Deadline First) with preemption. At any given

time, the task that is executing on the processor is
the one with earliest relative deadline among all
the tasks currently in the ready queue. Whenever a
fresh task arrives, if its relative deadline is less
than the (current) relative deadline of the currently
executing task , then is preempted, placed back in
the ready queue (at the head of the queue actually)
and will start executing. Thus the state of the plant
will consist of the current location, the values of
the clocks associated with plant and the state of the
ready queue. This motivates the following definition.
 A ready queue over is a finite sequence

 where, for , , with
. Intuitively,

 is a task instance at position i of type with
remaining computation time ci and remaining
relative deadline di. We assume the convention that

 is the head of the queue. The empty queue is
denoted by ε.
 The order in which the task instances appear in the
queue reflects the order in which these task instances
will be scheduled. If the queue is non-empty, the task
instance at the head of queue is currently supposed to
be executing. When time passes, both the remaining
computation time (ci) and the relative deadline (di)
of the task at the head of queue will decrease while
just the relative deadlines of the remaining tasks

Fig. 1 A simple plant

集 成 技 术 2017 年 6

will decrease. When the task at the head of queue
finishes, it will leave the ready queue and the task
behind it will be promoted to the head of queue and
will start executing. A fresh task instance, when
admitted will be inserted into the ready queue at the
appropriate slot as dictated by the relative deadline
of this instance and the current relative deadlines of
the task instances in the queue.
 The way in which the state of the ready queue
changes due to passage of time (and the execution
of tasks) is modeled by the function Comp. This
function takes a queue and a time duration t as
inputs and returns a queue resulting from computing
the tasks in for t time units on the processor
and is defined as follows. Firstly, .
Next suppose where for

. If , then , where
 w i t h a n d

 for .
 If , then where

 w i t h f o r
.

 The way in which a task that has just been
admitted inserted into the ready queue is captured
by the function Sch, which takes as inputs a ready
queue and a task instance J, and returns a ready
queue .
 Let be a ready queue,
where , and let be a task

instance. Then , where

with k being the least index such that .
Clearly this reflects the EDF policy.
 A queue is schedulable
iff for . That is, assuming that

no fresh task instances are inserted into the ready

queue, each task instance currently residing in the
ready queue can be scheduled (according to EDF)
and run to completion before its current deadline
expires. In what follows, all non-schedulable queues
will be identified with the single designated (non-
schedulable) queue named Err. The functions Comp
and Sch are extended in the obvious way to reflect
this convention.

2.3 The plant semantics

The semantics of the plant is defined by a transition
system , where

; is the set of
(reachable) configurations; are the least sets
satisfying the following:

 (1) ;
 (2) Suppose and . If there
exists such that , then

 a n d , w h e r e
 ;

 (3) Suppose and . Then
 a n d ;

 (4) Suppose and . I f
, t h e n a n d

. If , then

 and ;

 (5) .
 Configurations of the form are called
environment configurations where is a special
symbol, while those of the form are called
system configurations. The sets of environment
configurations and system configurations are
denoted and , respectively. Note that Err is
neither an environment configuration nor a system
configuration. Intuitively, is the game graph of
a real-time system where the environment triggers
tasks in an uncontrollable manner, while the system

P. S. Thiagarajan，等：实时任务准入控制器的自动合成3 期 7

admits or rejects them in a controllable way. Note
that we require environment moves to consume
a nonzero amount of time and system moves to
consume no time.
 In what follows, we shall often omit the
subscript . For a configuration , we define

. Tha t i s ,

is the set of possible actions that can be taken at
configuration . Note that , if is
an environment configuration, ; if is
a system configuration, .
 Without loss of generality, we shall assume that the
plant has no dead configuration, that is,

for . Given the restrictions on the structure
of the plant transitions, we can uniquely recover a
sequence of plant transitions from each sequence
of transitions of TS with the help of the projection
operator . Let
be an environment transition in TS. Then clearly, there
is a unique transition in such that

. In this case, we define

. For a system move
 in TS, we define . For

the special move , we define
. Using the operator , it is clear that we can

uniquely associate a sequence of transitions of the
plant with each transition sequence of TS (modulo
the handling of the err moves).

3 The admission controller synthesis
 problem

The plant is said to be schedulable iff .
That is, no task will ever miss its deadline, even if
we never reject any task. It is proved in Fersman’s
report[2]—in a related closed system setting—that

one can effectively determine if is schedulable,
under the preemptive EDF policy for a single
processor.
 Here we consider plants which may not be
schedulable and study the problem of designing an
admission policy under which the restricted behavior
of the plant becomes schedulable. Clearly, one
can trivially achieve schedulability by constantly
rejecting all arrived tasks. To rule out this, we
shall assume that we are also given a liveness
specification. Here we shall assume that LTL is the
chosen specification language. In order to formulate
this, we fix a finite set of atomic propositions

AP and a labeling function , where
. The target state of both 0 and

1 transitions coming out of a system state is the
same. To capture liveness properties, we need to
get the admission decisions made by the system
during a run. Hence we assign atomic propositions
to transitions than to states. From now on, we shall
assume our plant model to be augmented with AP
and a labeling function as specified above.
 The set of LTL formulas based on AP is as usual
given by the syntax with p ranging over AP:

 Let TRTS be the set of transitions of TS, that is, .
Using the operator Prj, we extend to TRTS. By
abuse of notation, this extension will also be
denoted as and it is given by:
for every . By convention, we will set

. Let be an infinite
sequence of transitions of TS. Set for each
natural number i. The notion of the LTL formula

 being satisfied at , denoted , is
defined in the standard way. For instance,

iff . We shall say that is a model of ,

集 成 技 术 2017 年 8

and denote this as , iff .
 We are now ready to define the notion of a
strategy. Define the set of (finite) runs of TS, denoted
Runs, to be the least subset of satisfying:
firstly, and the end state of is ;
secondly, let and the end state of be . If

there exists , then and
the end state of is . In what follows, We denote

the end state of a run by .
 A strategy f for the plant is a function

, which satisfies the following
conditions. These conditions are stated for a
run whose end state is : If , then

; If , then
.

 Thus a strategy recommends a set of moves at
the end state of each run. The moves recommended
are a subset of the moves enabled at the end state
and at least one move is recommended. In this sense
a strategy is, by definition, non-blocking. Note
that a strategy does not restrict the moves of the
environment in any way.
 Let f be a strategy. The notion of a finite run
being according to f is defined inductively. is
according to f. Next suppose is a run according to
f and . If and ,

then is a run according to f. Infinite runs, and the
notion of infinite runs according to a strategy, are
defined in the obvious way.
 We say f is safe iff Err does not appear in any run
according to f. Given an LTL specification , we will
say that the strategy f is -winning iff the following
conditions are satisfied: firstly, f is safe; secondly, if

 is any infinite run of TRTS according to f,
then is a model of .
 The admission controller synthesis problem is to

determine, given a plant and an LTL specification
, whether or not there exists a -winning strategy.

Our main result can now be stated.
 Theorem 1 There is a uniform decision procedure
using which one can determine for each pair
whether or not there exists a -winning strategy.
 Moreover, whenever a -winning strategy exists,
one can effectively realize a -winning strategy
as a finite timed automaton , so that the parallel
composition of and produces only non-blocking
safe runs of the plant each of which is a model of .

4 The main result

Our goal here is to prove Theorem 1. The proof is
based on two ideas. Firstly, as shown in Fersman’s
report[2], we can associate clock variables with
the ready queue and capture its dynamics with the
help of a mildly extended timed automaton model
that uses only the queue’s clock variables. The
second idea is that if there is a winning strategy
at all then there is one which respects the regional
equivalence induced by the plant’s and the queue’s
clock variables. Consequently, we can work with
the regional version of TS which will be a finite
transition system RG. Using standard techniques, it
is then easy to reduce the problem of determining
the existence of a winning strategy to the emptiness
problem for a tree automaton that we can
effectively construct. The automaton will run over

-labeled trees whose underlying tree will be
the computation tree induced by RG. Such a tree will
be accepted by iff the -labeling represents
a winning strategy. This will settle the decidability
problem. Further, due to Rabin’s tree theorem[22], in
case the language accepted by is non-empty, then

P. S. Thiagarajan，等：实时任务准入控制器的自动合成3 期 9

it in fact accepts a regular -labeled tree. This
regular tree can be effectively computed, represented
as a finite structure and this structure can be naturally
viewed as a timed automaton. This automaton will
constitute the admission controller we seek.

4.1 Timed automaton for the ready queue

In this section, we briefly summarize the construction
in Fersman’s report[2], a timed automaton extended
with subtraction which describes the dynamics
of the ready queue under the preemptive EDF
scheduling policy in a uniprocessor setting. In what
follows, we will often drop the subscript .
 A timed automaton extended with subtraction
is just an ordinary timed automaton, in which a
constant integer value may be subtracted from
a clock value during a transition. However such
subtractions will not be allowed in arbitrary contexts.
They will be used in a manner which ensures that
no clock value becomes negative via subtraction.
Moreover, a clock value will be subtracted from
only when its value is below the maximum constant
associated with it. Due to these two properties, the
region construction of ordinary timed automata can
also be applied to .
 Observe that a schedulable ready queue contains at

most instances of each task type .
Let denote the j-th instance of , for

. The function stat, to be associated
with the locations of will give the status of each
potential instance .
 The status of an instance can be out (not in the
ready queue), in (released and in the ready queue,
but has not started execution), exec (being executed
by the processor) or pre (started execution but has
been preempted by another instance). The set of
locations of consists of these status functions and

a special location ErrQ designated to represent all
non-schedulable ready queues. The initial location is
the status function representing the empty queue ,
denoted .
 The event alphabet is . An event
signifies the arrival of an instance of Y. The event

 is a dummy one which is used only for the
special location ErrQ.
 For each instance , two clocks xc and
xd are used to keep track of its remaining
computation time and remaining relative deadline.
The set of all such clocks is the clock set of .
The clocks evolve as follows.
 (1) xd is reset to zero when is released,
xc is reset to zero when it starts execution;
 (2) When finishes execution (and exits the
ready queue), we subtract from every
whose status is pre.
 Let (for short) be the transition system
associated with . From Fersman’s report[2], we
have the following.
 Proposit ion 2 There exists a one-to-one
correspondence between ready queues and
configurations in which satisfies:
 (1) , where for each ,
and ;
 (2) Suppose and ,

let and be a task instance.

Then iff is a
t r ans i t ion o f . Fur the r, i f f

 is a transition of .

 Hence, from now on, we shall replace the ready
queue component in configurations of TS by the
corresponding configurations in . To be specific,
the configuration of TS will now be
represented as where .

集 成 技 术 2017 年 10

 We define the regional equivalence relation ~ to
b e t h e l e a s t e q u i v a l e n c e r e l a t i o n o n R C

s a t i s fy ing : suppose , and
 are configurations of TS .

Then iff , , and the clock
valuations and belong to the same clock
region with respect to the clocks in , where

 denotes the clock valuation over which
agrees with V on clocks of X and agrees with on
clocks of .
 Using the arguments developed in Fersman
et al.[2], it is easy to prove the next result.
 Proposition 3 The following hold:
 (1) Let be environment configurations of TS
with . If , then there exists such

that and ;
 (2) Let be system configurations of TS with

. Suppose and , then iff
.

 We are now ready to define , the regional version
of . A region of is an equivalence class of ~ on RC.
We define
where . The set of reachable
regions RR and are the least sets satisfying:
 (1) . If and
then and ;

 (2) If and where , then

 and ;
 (3) If , then .
 It follows that RR is finite and the construction of
RG is effective. Call a region an environment or
system region according to whether is in RCe or
RCs. RRe and RRs denote the sets of environment and
system regions, respectively.

4.2 Region-respecting strategies

Set TRRG to be . We define the set of (finite) runs

of RG, denoted RunsRG, to be the least subset of
 satisfying the following. Firstly,

and the end state of is . Next,
suppose and the end state of is . If

, then and the
end state of is . By abuse of notation, we also
denote the end state of a run as .
 For a transition , we define
its projection on RG , denoted , to be

, where if ; and
otherwise. It is clear that . Extend to
runs of TS in the obvious way.
 We say a strategy f is region respecting iff for

, if and are according to f and

, then .

 The following observation is the key to proving
decidability.
 Lemma 4 There exists a -winning strategy for ,
iff there exists a -winning strategy which is region
respecting.
 Proof: Suppose f is a -winning strategy for . We
inductively construct REf, a “representative” prefix-
closed subset of Runs(f), the set of (finite) runs of
TS according to f, as follows. Firstly, . Now
suppose and is an environment
configuration. We will say that is a region
successor of iff there exists and
such that . Let
be the set of region successors of . We pick

, …, and for each
, such that for

each . We now let for each
. One may see a need for appealing to

the axiom of choice here. However the choice of ti

and can be made effectively with a bit of work.
Next, suppose and is a system

P. S. Thiagarajan，等：实时任务准入控制器的自动合成3 期 11

configuration. Then for each ,
where .
 It is clear that REf is indeed a prefix-closed subset

of Runs(f). Now suppose that . Then from
the construction of REf , it is easy to see that there is

at most one such that .
 We now define a strategy as follows. Let

 a n d . I f i s a s y s t e m

configuration and there exists such that
, then ; otherwise,

. It is now straightforward to argue

that is a region respecting -winning strategy.
4.3 Decidability

From Lemma 4, it follows that to check if a
-winning strategy exists, it suffices to determine if a
-winning region respecting strategy (“rr-strategy”

for short) exists.
 A strategy function is a function g which maps
RunsRG to such that, if is in RunsRG with

, then .
If , then ; If ,
then . Clearly, there is a 1-1 correspon-

dence between strategy functions and rr-strategies.
We define the notion of a strategy function being

-winning in the expected manner. It follows that
there is also a 1-1 correspondence between

-winning rr-strategies and -winning strategy
functions.
 We can represent strategy functions as labeled
infinite trees and design a tree automaton to
recognize the set of winning rr-strategies. We first
fix some basic terminology, let be a finite set. A

-tree T is a prefix-closed subset of , elements
of T are nodes with being the root. The set
of successors of , denoted , i s

. An infinite path π of T is a subset of

T such that and every node in π has exactly one
successor in π. The direction of a node w, denoted
dir(w), is defined as follows, is a special
element $ that is not in . For , where ,
define . Let be a finite alphabet of

labels. A -labeled -tree is a pair , where T is
a -tree and is a function .
 A strategy tree is a -labeled TRRG-tree of
the form satisfying: (1) ; and
(2) let . If , then for

every successor of , . If ,
then for at least one successor of .
 Clearly, there is a 1-1 correspondence between
strategy trees and strategy functions. We now wish to
construct a non-deterministic Büchi tree automaton
which will run over -labeled TRRG-tree of the
form . It will accept such a tree iff it
is a strategy tree that corresponds to a -winning
strategy function.
 In what follows, we set and assume
basic background concerning tree automata[23]. The
tree automaton we wish to construct will of the form

, where S is a finite set of states
and , the set of initial states and , the
set of accepting states viewed as a Büchi acceptance
condition. The transition relation will be a subset
of , where n is the maximum out-

degree of the states of RG. We will assume the set of
transitions of RG (that is TRRG) to be an ordered set.
 It will be convenient to view as the intersection
of three non-deterministic Büchi tree automata ,
and . The automaton will check if the -labeled
RRG-tree is running over a strategy tree. will
check if the strategy represented is safe and will
check if every infinite run according to the strategy
represented is a model of .

集 成 技 术 2017 年 12

 Let . A state in S1 will be of
the form (dir, md, lb) with , giving the
direction from which the node that the automaton is
currently visiting was arrived at. The component md
{acc, rej} (“accept”, “reject”) will specify the current
mode of the automaton, and will specify the
label the automaton expects the node it is visiting
to have. will be a singleton with the member

. Now suppose is a
state, where is the set of transitions in
TRRG whose first component is . Then each move
in whose first component is s will be of the form

. Moreover, the first component
of each si will be . A typical move will be

 ,
where the automaton has guessed that the label on the
node is visiting to be , but the actual label it reads is

. On this node, it will enter the rej mode and guess
 (this is irrelevant actually) and propagate a copy to

all the successor nodes. Once it enters the rej mode,
it will just keep propagating this mode. Naturally,

. Another typical

move is with
 and being a system region. In

this case, there will be exactly two successor nodes
and along the “0-direction”, the automaton guesses a
label and along the “1-direction” the label . If the
end state of the current node is an environment state
(or), then the automaton will guess uniquely all
the successor nodes to have the label . On the other
hand, if the end state of the current node is an system
state, then it could guess that only the “0-successor”
node has label , or that only the “1-successor” node
has label or that both have labels signifying that
the strategy is at this stage non-deterministic.
 The automaton will have a similar structure. It

will also start in an accepting mode and ensure that
along -paths (i.e. a path in which every node is
labeled with), no node is encountered whose end
state is the region .
 It is well-known[24] that the LTL-formula can be
represented as a non-deterministic Büchi automaton

 running over ω-strings over the alphabet 2AP. The
third tree automaton we construct will simulate
along -paths and accept—using the accepting states
of —iff every -path (more precisely, its induced
LTL-model) is a model of .
 The detailed definitions of , , are tedious
but straightforward and we omit them due to lack of
space. The required tree automaton is the intersec-
tion of , , . Clearly, the language of -labeled
trees of the form (RunsRG, μ) accepted by is non-
empty iff there is a -winning rr-strategy and this
settles the first part of Theorem 1.
 As for the second part, assume that there exists
a -winning strategy. Then by Lemma 4, there is a

-winning rr-strategy. Hence the language accepted
by is non-empty. By Rabin’s tree theorem[22],
accepts a regular tree of the form (RunsRG, μ) which
can then be effectively represented as a finite state
transition system . This transition system can be
viewed as a timed automaton. Each location will be
a node of (RunsRG, μ) and it will be accompanied by
a labeling function . The initial location will be

with , whereas to all other
locations will assign a transition of RG of the form

. From the region , we can recover a

clock constraint over the clocks and view
it as the clock invariant associated with the location.
To be precise, we must introduce an extra clock to

ensure that the system states are urgent.
 We convert each edge of to a transition as

P. S. Thiagarajan，等：实时任务准入控制器的自动合成3 期 13

follows. Let . If ,

then there exists a unique transition
 such that for every with

. H e n c e w e c o n v e r t t o
. If , then we convert

 to . It is not difficult to show that
the parallel composition of and produces only
safe runs which are models of .
 According to Vardi’s report[25], the complexity of

emptiness testing of is . We have
[24]. Again, it is not difficult

to see that [21].
Where is the number of locations of the plant;
is the number of locations of the queue automaton

; k is the total number of clock variables; c is
the largest constant appearing across all the clock
constraints and d is the total number of difference
constraints.

5 Conclusion

We have formulated here a timed open system model
to describe task arrival patterns and have studied
the problem of synthesizing admission controllers
that guarantee schedulability while meeting an LTL
specification. Our work can be extended in a number
of ways. One can consider using branching time
requirements based on CTL or . Since Lemma
4 will still go through, one can use the techniques
developed in Kupferman’s report[26] to solve the
resulting admission controller synthesis problems.
 In the present paper, we have assumed that our
controller has read-only access to the clocks of the
plant (and the clocks of the queue automaton). This is
a justifiable assumption since the plant model merely
describes the expected task arrival patterns and this

information can be assumed to be available to the
controller as well. Nevertheless, it will be worth
exploring settings where the controller is endowed
with its own clocks with pre-specified granularities.
It will be equally interesting to study controllers
that can interact with the ready queue, so that tasks
can be rejected after they have been admitted to the
ready queue. It will also be worthwhile considering
settings with multi-processors, shared resources, and
mixed-criticality tasks.
 In summary, using the controller synthesis
paradigm to design admission policies in real time
tasking environments promises to be a fruitful
approach.

References

[1] Buttazzo GC. Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications
[M]. Holland: Kluwer Academic Publishers, 1997.

[2] Fersman E, Pettersson P, Yi W. Timed automata
with asynchronous processes: schedulability and
decidability [C] // Proceedings of the International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems, 2002: 67-82.

[3] Stigge M, Yi W. Graph-based models for real-time
workload: a survey [J]. Real-Time Systems, 2015,
51(5): 602-636.

[4] Liu JWS. Real-Time Systems [M]. London:
Prentice-Hall, 2000.

[5] Maler O, Pnueli A, Sifakis J. On the synthesis
of discrete controllers for timed systems [C] //
Proceedings of the Annual Symposium on
Theoretical Aspects of Computer Science, 1995:
229-242.

[6] Asarin E, Maler O, Pnueli A. Symbolic controller
synthesis for discrete and timed systems [C] //
Proceedings of Hybrid Systems II, 1999: 1-20.

[7] D’Souza D, Madhusudan P. Timed control synthesis
for external specifications [C] // Proceedings of

集 成 技 术 2017 年 14

the Annual Symposium on Theoretical Aspects of
Computer Science, 2002: 571-582.

[8] Bouyer P, Deepak DS, Madhusudan P, et al. Timed
control with partial observability [C] // Proceedings
of the International Conference on Computer Aided
Verification, 2003: 180-192.

[9] Sankur O, Bouyer P, Markey N, et al. Robust
controller synthesis in timed automata [C] //
Proceedings of the International Conference on
Concurrency Theory, 2013: 546-560.

[10] Buchi JR, Landweber LH. Solving sequential
conditions by finite-state strategies [J]. Transactions
of the American Mathematical Society, 1969,
138(1): 295-311.

[11] Ramadge PJ, Wonham WM. Supervisory control
of a class of discrete event processes [J]. SIAM
Journal on Control and Optimization, 1987, 25(1):
206-230.

[12] Pnue l i A , Rosner R . On the syn thes i s o f
asynchronous reactive module [C] // Proceedings
of the International Colloquium on Automata,
Language, and Programming, 1989: 652-671.

[13] Ben-Abdallah H, Choi JY, Clarke D, et al. A process
algebraic approach to the schedulability analysis
of real-time systems [J]. Real-Time Systems, 1998,
15(3): 189-219.

[14] Kwak H, Lee I, Philippou A, et al. Symbolic
schedulability analysis of real-time systems [C] //
Proceedings of the IEEE Real-Time Systems
Symposium, 1998: 409-418.

[15] Bertin V, Poize M, Pulou J, et al. Towards validated
real-time software [C] // Proceedings of the
Euromicro Conference on Real-Time Systems,
2000: 157-164.

[16] Niebert P, Yovine S. Computing optimal operation
schemes for chemical plants in multi-batch mode
[C] // Proceedings of the International Workshop on
Hybrid Systems: Computation and Control, 2000:

338-351.
[17] Henzinger TA, Bengamin H, Meyer KC. Embedded

control systems development with giotto [C] //
Proceedings of the ACM SIGPLAN Workshop
on Optimization of Middleware and Distributed
Systems, 2001: 64-72.

[18] Altisen K, Gößler G, Sifakis J. Scheduler modeling
based on the controller synthesis paradigm [J].
Real-Time Systems, 2002, 23(1-2): 55-84.

[19] Majumdar R, Saha I, Zamani M. Performance-
aware scheduler synthesis for control systems [C] //
Proceedings of the ACM International Conference
on Embedded Software, 2011: 299-308.

[20] Burns A, Davis RI. Mixed-criticality systems: a
review [Z]. 2017-01[2017-04-01]. http:// www-
users.cs.york.ac.uk/~burns/review.pdf, 2017.

[21] Alur R, Dill DL. A theory of timed automata [J].
Theoretical Computer Science, 1994, 126(2): 183-
235.

[22] Rabin MO. Decidability of second-order theories
and automata on infinite trees [J]. Bulletin of the
American Mathematical Society, 1968, 141(5):
1-35.

[23] Thomas W. Automata on infinite objects [M] //
Handbook of Theoretical Computer Science,
Elsevier, 1990: 133-191.

[24] Vardi MY, Wolper P. Reasoning about infinite
computations [J]. Information and Computation,
1994, 115(1): 1-37.

[25] Vardi MY, Wolper P. Automat ia- theore t ic
techniques for modal logics of programs [J]. Journal
of Computer and System Sciences, 1986, 32(2):
183-221.

[26] Kupferman O, Madhusudan P, Thiagarajan PS,
et al. Open systems in reactive environments:
control and synthesis [C] // Proceedings of the
International Conference on Concurrency Theory,
2000: 92-107.

