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摘  要  在许多实时系统中，同一个计算平台上往往既有硬实时关键计算任务又有软实时非关键计算

任务。硬实时任务必须在规定时间内完成，否则将导致系统错乱或崩溃等严重后果。而软实时任务若

没有在规定时间内完成，虽会影响系统性能，但不会造成重大后果。为确保每个硬实时任务均在其规

定时间内完成，在某些情况下需要拒绝一些软实时任务进入任务队列。文章提出了一种基于控制器自

动合成策略的解决方案，通过所设计的准入控制器，对系统产生的每一个新任务自动决定是否准其进

入任务队列。准入控制器必须使得所有被准入的任务均在规定时间内完成，并且决策序列满足以线性

时态逻辑描述的服务质量要求。文章的主要贡献是提出了判定是否存在准入控制器的算法，该算法能

在判定结果为真时构造出一个以有限状态时间自动机表达的准入控制器。
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Abstract In many real-time computing environments, there are some tasks that are time-critical while 
others are not. To ensure that every critical task can be completed before its deadline, it is necessary to reject 
some non-critical tasks to entry into the ready queue. We address this problem in the framework of controller 
synthesis. Our goal is to come up with an admission controller which admits or rejects a task request. With 
such a controller, no admitted tasks will miss their deadline and the admitted patterns of task releases satisfy 
a quality-of-service constraint in the form of a linear time temporal logic specification. We prove that it is 
decidable to determine if such an admission controller exists. Furthermore, if the answer is positive, it is 
possible to effectively construct a controller in the form of a finite timed controller. 
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1 Introduction

In real-time systems, it is important to schedule 
tasks so that all time-critical tasks are completed 
before their deadlines. Classical schedulability 
analysis techniques[1] make strong assumptions 
about the temporal arrival patterns of the tasks. To 
overcome this limitation, a model was suggested 
in Fersman et al’s report[2] (hereafter Fersman’s 
report for brevity), where timed automata are used 
to describe task arrival patterns. It was shown that, 
in a uniprocessor setting, one can decide whether all 
tasks can be scheduled to meet their deadlines when 
the task arrivals are described by a timed automaton. 
As surveyed in Stigge’s report[3], this model is the 
most expressive among existing graph-based real-
time task models. Any existing task model can be 
represented in the timed automata based task model 
of Fersman’s report[2]. 
 In many real-time settings, the task arrival 
patterns will be such that some tasks will miss their 
deadlines. One method, as noted in Liu’s report[4], 
to deal with this is to subject each new task instance 
to an acceptance test and admit it if the new ready 
queue resulting from adding this task instance is still 
schedulable. Such an approach is not satisfactory 
because a critical task may fail to get into the ready 
queue. Hence it is useful to consider designing more 
flexible admission policies.
 In this paper, we study this problem from the 
perspective of controller synthesis. Using a timed 
automaton, we model the real-time setting as an 
open system. This open system, called a plant in this 
context, will have environment states from which the 
environment can make uncontrollable timed moves 
to release tasks. Each such uncontrollable action, 

leading to a system state, will then be immediately 
followed by an urgent pair of controllable actions: 
one of them, admitting the just released task instance 
and putting it into the ready queue and the other one 
rejecting it. We study the problem of constructing 
a strategy for choosing the controllable actions so 
that the admitted task instances, no matter what the 
environment does, can all be scheduled without 
missing their deadlines. A trivially safe policy would 
be to reject all task instances. To prevent this, we 
also require that the admitted sequences of plant 
transitions should satisfy an LTL (Linear Time 
Temporal Logic) specification that will typically 
demand some liveness and fairness properties.
 We note that our framework is expressive enough 
to distinguish between hard real-time tasks—by 
specifying they must always be admitted—and 
soft tasks. Further, we can impose QoS (Quality of 
Service) requirements on the soft tasks by specifying 
fairness requirements such as:“Along any run, if 
(the soft task)  is released infinitely often, then   
must also be admitted infinitely often”. For ease of 
presentation, however, we do not impose a syntactic 
distinction between hard and soft tasks.
 As in Fersman’s report[2], we assume a uni-
processor computing resource for the sake of 
convenience. The EDF (Earliest Deadline First) 
scheduling policy with preemption is known to be 
optimal in this setting[1]. In other words, if a task set 
is schedulable at all, then it is schedulable under EDF 
with preemption. Hence we assume this scheduling 
policy. We then find that, in this setting, given a 
plant in the form of a timed automaton and an LTL 
specification, one can effectively determine whether 
there is a winning strategy for admitting tasks so 
that all admitted tasks are schedulable and all the 
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runs permitted by the strategy meet the given LTL 
specification. We also find that whenever there is a 
winning strategy, there is in fact a winning strategy 
which can be synthesized as a finite timed automaton 
called the admission controller. Consequently, 
the controlled behavior obtained via the parallel 
composition of the plant and the controller will 
admit only schedulable ready queues and satisfy the 
LTL specification.
 Our work may be viewed as an extension to an 
open system framework of the results reported in 
Fersman’s report[2]. As discussed already, the current 
setting has a natural motivation and it is a pleasing 
fact that techniques from the controller synthesis 
domain and timed-automata-based schedulability 
analysis techniques can be combined in a natural 
manner to solve the synthesis problem at hand. In 
the literature, a number of studies[5-9] are available 
regarding controller synthesis in a timed setting. 
The key motivation of these studies is to extend 
classical controller synthesis results for discrete 
event systems[10-12] to a timed setting. In comparison, 
though we use the language and techniques of (timed) 
controller synthesis, our motivation is very different. 
In the present setting, our admission controller will 
not have any clock variables of its own. It will be 
interesting to endow the controller with its own 
clocks and granularity and study our controller 
synthesis problem along the lines of timed control[7,8].
 A second related line of work is to derive a 
schedule for a real-time application, given the 
timed model of the application and a set of resource 
constraints[13-19] in fact carrying out the work using 
the controller synthesis paradigm. However, the 
emphasis in this line of work is to restrict the timed 
behaviors of the application so as to meet, in a 

timely fashion, access to shared resources. It will 
be interesting to extend our work along this line, to 
multi-processor settings accompanied by resource 
access protocols for shared resources.
 A recent trend in real-time systems is the 
scheduling of real-time tasks in mixed-criticality 
frameworks. The key characteristics is, instead of 
one fixed computation time, a task can be associated 
with several worst-case execution times, each 
corresponding to an estimate at a different critical 
level. A comprehensive review of work in this 
area can be found in Burns’ report[20]. It will be 
worthwhile to extend our synthesis results to the 
scheduling of mixed-criticality tasks.
 In section 2, we formulate our plant model and 
define its operational semantics. In section 3, we 
specify the admission controller synthesis problem 
and state the our main result. The proof of the main 
result is presented in section 4 and the prospects 
for extending the current work is discussed in the 
concluding section 5.

2 The plant model

We first recall that a timed automaton , is a 
structure  where Q is a finite set of 
locations and  is the initial location; X is a 
finite set of clocks and  is a finite set of events. 

 i s  t h e  t r a n s i t i o n 

relation. Here  is the set of clock constraints 
over X. A clock constraint over X is a finite 
conjunction of basic constraints of the form 

 where . As 
usual  is the set of natural numbers. In what 
follows,  and  denote the set of non-negative 
reals and positive reals, respectively. The difference 
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a clock region. We have , 
where  and  are the least sets satisfying the 
following:
 (1)  ;
 (2) If  and there exists 

 where , then  

and .
2.1 The model

Next we recall how task arrival patterns in a real time 
environment can be modeled using timed automata 
as proposed in Fersman’s report[2]. The basic idea is 
to associate a task with each location. Whenever a 
location is entered, an instance of the task associated 
with the location is supposed to be released. Here, 
it will be convenient to associate tasks with the 
transitions rather than with the locations. We also 
wish to highlight that we are dealing with an open 
system model—called a plant in this context—of 
task arrival patterns on which an admission control 
policy can be imposed. Formally, we define a plant 

 to be a structure , 
where: 
 (1) Qe and Qs are disjoint finite nonempty sets of 
environment states and system states, respectively.
 (2)  is the initial state.
 (3)  is a finite set of task types. The functions C, 
D:  associate with each task type a computation 
time and a relative deadline, respectively. Further, 
for each , .
 (4) X is a finite set of clocks.

 (5)   is a set of 
environment transitions. For each system state , there 
exists a unique environment state q and a unique 
environment transition of the form .
 (6 )   i s  a  s e t  o f  sys t em 
transitions. For each system state , there exists a 

constraints  will be needed later to capture 
the behavior of the ready queue.
 A clock valuation V over X is a function . For 

,  is the clock valuation  
for . For ,  is the clock valuation 
which maps every clock in Y to zero and agrees 

with V on other clocks. The notation  means V 
satisfies the clock constraint  and is defined in the 
obvious way. The timed behavior of  is given by the 

transition system  

where  and  are the least sets satisfying the 
following: (1) , where  for 
every clock variable x; and (2) if  and

there exists  and  such that ,

then  and ,  where 

.
 It is well-known[21] that we can take a quotient of 

 in the form of a finite transition system, called 
the region automaton  of . For , let cx 
be the maximum constant which appears in basic 
constraints (of transition guards of)  of the form 

,  where .  Two clock 
valuations V,  are region-equivalent, denoted 

, iff the following hold:
 (1) For each , either  
or . Further, in the former case, 

 iff , where  is the 

fractional part of v;
 (2) For each  such that  
a n d  ,  w e  h a v e  

 iff ; 
 (3) For every basic constraint  which 
appears in (transition guards of ) ,  iff .
 A clock region is an equivalence class of clock
valuations. A region is a pair , where  and r is 
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unique environment state q and exactly two system 

transitions of the form  and . 
 From now on, we fix a plant  defined above. 
Informally, the plant model consists of a timed 
automaton whose events are interpreted as tasks, 
in case they are associated with environment 
transitions. For system transitions, we allow only 
the events {0, 1} which will be used to capture the 
decisions made by the controller. The semantics of 
the plant will implicitly impose a zero-delay on the 
system states. In other words, as soon as a system 
state is entered, the controller will make the decision 
to either accept the task that has just been released 
by the environment, this is captured by the  1-labeled 
transition going out of the system state. On the other 
hand, the 0-labeled transition going out of a system 
state models the decision to reject the just released 
task. We could have assigned a special clock variable 
to capture the immediacy of these transitions, but 
we have not done so for convenience. As mentioned 
above, the decision as to whether a just released 
task is to be admitted or not is made as soon as the 
task is released by the environment. Thus system 
moves come in pairs and each such pair is uniquely 
associated with an environment move. Further, the 
environment is oblivious to the admission policy 
being followed by the system. This explains the 
restrictions placed on the structure of the transitions. 
In what follows, we shall often denote both  and 

 as . An example of a plant is shown in Fig. 1. 

2.2 The ready queue states

The semantics of  is to be understood with respect 
to a scheduling policy. Here we work with the simple 
framework consisting of a single processor. The 
scheduling policy we shall assume is EDF (Earliest 
Deadline First) with preemption. At any given 

time, the task that is executing on the processor is 
the one with earliest relative deadline among all 
the tasks currently in the ready queue. Whenever a 
fresh task  arrives, if its relative deadline is less 
than the (current) relative deadline of the currently 
executing task , then  is preempted, placed back in 
the ready queue (at the head of the queue actually) 
and  will start executing. Thus the state of the plant 
will consist of the current location, the values of 
the clocks associated with plant and the state of the 
ready queue. This motivates the following definition.
 A ready queue  over  is a finite sequence  

 where, for ,  ,  with 
. Intuitively,  

 is a task instance at position i of type  with 
remaining computation time ci and remaining 
relative deadline di. We assume the convention that 

 is the head of the queue. The empty queue is 
denoted by ε.
 The order in which the task instances appear in the 
queue reflects the order in which these task instances 
will be scheduled. If the queue is non-empty, the task 
instance at the head of queue is currently supposed to 
be executing. When time passes, both the remaining 
computation time (ci) and the relative deadline (di) 
of the task at the head of queue will decrease while 
just the relative deadlines of the remaining tasks 

Fig. 1 A simple plant
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will decrease. When the task at the head of queue 
finishes, it will leave the ready queue and the task 
behind it will be promoted to the head of queue and 
will start executing. A fresh task instance, when 
admitted will be inserted into the ready queue at the 
appropriate slot as dictated by the relative deadline 
of this instance and the current relative deadlines of 
the task instances in the queue.
 The way in which the state of the ready queue 
changes due to passage of time (and the execution 
of tasks) is modeled by the function Comp. This 
function takes a queue  and a time duration t as 
inputs and returns a queue  resulting from computing 
the tasks in  for t time units on the processor 
and is defined as follows. Firstly, .
Next suppose  where  for 

. If , then , where 
 w i t h   a n d    

 for .
 If , then  where  

 w i t h   f o r 
.

 The way in which a task that has just been 
admitted inserted into the ready queue is captured 
by the function Sch, which takes as inputs a ready 
queue  and a task instance J, and returns a ready 
queue .
 Let  be a ready queue, 
where , and let  be a task 

instance. Then , where 
 

with k being the least index such that . 
Clearly this reflects the EDF policy.
 A queue  is schedulable 
iff  for . That is, assuming that 

no fresh task instances are inserted into the ready 

queue, each task instance currently residing in the 
ready queue can be scheduled (according to EDF) 
and run to completion before its current deadline 
expires. In what follows, all non-schedulable queues 
will be identified with the single designated (non-
schedulable) queue named Err. The functions Comp 
and Sch are extended in the obvious way to reflect 
this convention.

2.3 The plant semantics

The semantics of the plant  is defined by a transition 
system , where 

;  is the set of 
(reachable) configurations;  are the least sets 
satisfying the following:

 (1) ;
 (2) Suppose  and . If there
exists  such that , then 

 a n d  ,  w h e r e  
   ;

 (3) Suppose  and . Then 
  a n d  ;

 (4)  Suppose  and .  I f 
,  t h e n   a n d 

.  If  ,  then 

 and ;

 (5) .
 Configurations of the form  are called 
environment configurations where  is a special 
symbol, while those of the form  are called 
system configurations. The sets of environment 
configurations and system configurations are 
denoted  and , respectively. Note that Err is 
neither an environment configuration nor a system 
configuration. Intuitively,  is the game graph of 
a real-time system where the environment triggers 
tasks in an uncontrollable manner, while the system 
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admits or rejects them in a controllable way. Note 
that we require environment moves to consume 
a nonzero amount of time and system moves to 
consume no time.
 In what follows,  we shall  often omit  the 
subscript . For a configuration , we define 

.  Tha t  i s ,   

is the set of possible actions that can be taken at 
configuration . Note that , if  is 
an environment configuration, ; if  is 
a system configuration, .
 Without loss of generality, we shall assume that the 
plant has no dead configuration, that is,  

for . Given the restrictions on the structure 
of the plant transitions, we can uniquely recover a 
sequence of plant transitions from each sequence 
of transitions of TS with the help of the projection 
operator . Let  
be an environment transition in TS. Then clearly, there
is a unique transition  in  such that

. In this case, we define

. For a system move 
 in TS, we define . For 

the special move , we define 
. Using the operator , it is clear that we can 

uniquely associate a sequence of transitions of the 
plant with each transition sequence of TS (modulo 
the handling of the err moves).

3 The admission controller synthesis
  problem

The plant  is said to be schedulable iff .
That is, no task will ever miss its deadline, even if 
we never reject any task. It is proved in Fersman’s 
report[2]—in a related closed system setting—that 

one can effectively determine if  is schedulable, 
under the preemptive EDF policy for a single 
processor.
 Here we consider plants which may not be 
schedulable and study the problem of designing an 
admission policy under which the restricted behavior 
of the plant becomes schedulable. Clearly, one 
can trivially achieve schedulability by constantly 
rejecting all arrived tasks. To rule out this, we 
shall assume that we are also given a liveness 
specification. Here we shall assume that LTL is the 
chosen specification language. In order to formulate 
this, we fix a finite set of atomic propositions 

AP and a labeling function , where 
. The target state of both 0 and 

1 transitions coming out of a system state is the 
same. To capture liveness properties, we need to 
get the admission decisions made by the system 
during a run. Hence we assign atomic propositions 
to transitions than to states. From now on, we shall 
assume our plant model to be augmented with AP 
and a labeling function  as specified above.
 The set of LTL formulas based on AP is as usual 
given by the syntax with p ranging over AP: 

 Let TRTS be the set of transitions of TS, that is, .
Using the operator Prj, we extend  to TRTS. By 
abuse of notation, this extension will also be 
denoted as  and it is given by:  
for every  . By convention, we will set 

. Let  be an infinite 
sequence of transitions of TS. Set  for each 
natural number i. The notion of the LTL formula  

 being satisfied at , denoted , is 
defined in the standard way. For instance,  

iff . We shall say that  is a model of , 
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and denote this as , iff .
 We are now ready to define the notion of a 
strategy. Define the set of (finite) runs of TS, denoted  
Runs, to be the least subset of  satisfying: 
firstly, and the end state of  is ; 
secondly, let  and the end state of  be . If 

there exists , then  and 
the end state of  is . In what follows, We denote 

the end state of a run  by .
 A strategy f  for the plant  is  a function 

, which satisfies the following 
conditions. These conditions are stated for a 
run  whose end state is :  If ,  then 

;  If  ,  then 
.

 Thus a strategy recommends a set of moves at 
the end state of each run. The moves recommended 
are a subset of the moves enabled at the end state 
and at least one move is recommended. In this sense 
a strategy is, by definition, non-blocking. Note 
that a strategy does not restrict the moves of the 
environment in any way.
 Let f be a strategy. The notion of a finite run 
being according to f is defined inductively.  is 
according to f. Next suppose  is a run according to 
f and . If  and ,

then  is a run according to f. Infinite runs, and the 
notion of infinite runs according to a strategy, are 
defined in the obvious way.
 We say f is safe iff Err does not appear in any run 
according to f. Given an LTL specification , we will 
say that the strategy f is -winning iff the following 
conditions are satisfied: firstly,  f is safe; secondly, if 

 is any infinite run of TRTS according to f, 
then  is a model of  .
 The admission controller synthesis problem is to 

determine, given a plant  and an LTL specification 
, whether or not there exists a -winning strategy. 

Our main result can now be stated.
 Theorem 1 There is a uniform decision procedure 
using which one can determine for each pair    
whether or not there exists a -winning strategy.  
 Moreover, whenever a -winning strategy exists, 
one can effectively realize a -winning strategy 
as a finite timed automaton , so that the parallel 
composition of  and  produces only non-blocking 
safe runs of the plant each of which is a model of .

4 The main result

Our goal here is to prove Theorem 1. The proof is 
based on two ideas. Firstly, as shown in Fersman’s 
report[2], we can associate clock variables with 
the ready queue and capture its dynamics with the 
help of a mildly extended timed automaton model 
that uses only the queue’s clock variables. The 
second idea is that if there is a winning strategy 
at all then there is one which respects the regional 
equivalence induced by the plant’s and the queue’s 
clock variables. Consequently, we can work with 
the regional version of TS which will be a finite 
transition system RG. Using standard techniques, it 
is then easy to reduce the problem of determining 
the existence of a winning strategy to the emptiness 
problem for a tree automaton  that we can 
effectively construct. The automaton  will run over 

-labeled trees whose underlying tree will be 
the computation tree induced by RG. Such a tree will 
be accepted by  iff the -labeling represents 
a winning strategy. This will settle the decidability 
problem. Further, due to Rabin’s tree theorem[22], in 
case the language accepted by  is non-empty, then 
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it in fact accepts a regular -labeled tree. This 
regular tree can be effectively computed, represented 
as a finite structure and this structure can be naturally 
viewed as a timed automaton. This automaton will 
constitute the admission controller we seek.

4.1 Timed automaton for the ready queue

In this section, we briefly summarize the construction 
in Fersman’s report[2], a timed automaton extended 
with subtraction  which describes the dynamics 
of the ready queue under the preemptive EDF 
scheduling policy in a uniprocessor setting. In what 
follows, we will often drop the subscript .
 A timed automaton extended with subtraction 
is just an ordinary timed automaton, in which a 
constant integer value may be subtracted from 
a clock value during a transition. However such 
subtractions will not be allowed in arbitrary contexts. 
They will be used in a manner which ensures that 
no clock value becomes negative via subtraction. 
Moreover, a clock value will be subtracted from 
only when its value is below the maximum constant 
associated with it. Due to these two properties, the 
region construction of ordinary timed automata can 
also be applied to .
 Observe that a schedulable ready queue contains at 

most  instances of each task type .
Let  denote the j-th instance of , for 

. The function stat, to be associated 
with the locations of  will give the status of each 
potential instance .
 The status of an instance can be out (not in the 
ready queue),  in (released and in the ready queue, 
but has not started execution), exec (being executed 
by the processor) or pre (started execution but has 
been  preempted by another instance). The set of 
locations of  consists of these status functions and 

a special location ErrQ designated to represent all 
non-schedulable ready queues. The initial location is 
the status function representing the empty queue , 
denoted .
 The event alphabet is . An event   
signifies the arrival of an instance of Y. The event   

 is a dummy one which is used only for the 
special location ErrQ.
 For each instance , two clocks xc  and 
xd  are used to keep track of its remaining 
computation time and remaining relative deadline. 
The set  of all such clocks is the clock set of . 
The clocks evolve as follows.
 (1)  xd  is reset to zero when  is released,  
xc  is reset to zero when it starts execution;
 (2) When  finishes execution (and exits the 
ready queue), we subtract  from every  
whose status is pre.
 Let  (  for short) be the transition system 
associated with . From Fersman’s report[2], we 
have the following. 
 Proposit ion 2  There exists  a  one-to-one 
correspondence  between ready queues and 
configurations in  which satisfies:
 (1) , where  for each ,
and ;
 (2) Suppose  and ,

let  and  be a task instance. 

Then  iff   is  a
t r ans i t ion  o f  .  Fur the r,   i f f 

 is a transition of .

 Hence, from now on, we shall replace the ready 
queue component in configurations of TS by the 
corresponding configurations in . To be specific, 
the configuration  of TS will now be 
represented as  where .
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 We define the regional equivalence relation ~ to
b e  t h e  l e a s t  e q u i v a l e n c e  r e l a t i o n  o n  R C 

s a t i s fy ing :  suppose  ,  and 
 are configurations of TS . 

Then  iff , ,  and the clock 
valuations  and  belong to the same clock 
region with respect to the clocks in , where 

 denotes the clock valuation over  which 
agrees with V on clocks of X and agrees with  on 
clocks of .
 Using the arguments developed in Fersman 
et al.[2], it is easy to prove the next result. 
 Proposition 3 The following hold: 
 (1) Let  be environment configurations of TS  
with . If , then there exists  such 

that  and ;
 (2) Let  be system configurations of TS with  

. Suppose  and , then  iff  
.

 We are now ready to define , the regional version 
of . A region of  is an equivalence class of ~ on RC. 
We define  
where . The set of reachable 
regions  RR and  are the least sets satisfying:
 (1) . If  and  
then  and ;

 (2) If  and  where , then 

 and ;
 (3) If , then .
 It follows that RR is finite and the construction of  
RG is effective. Call a region  an environment or 
system region according to whether  is in RCe or 
RCs. RRe and RRs denote the sets of environment and 
system regions, respectively.

4.2 Region-respecting strategies

Set TRRG to be . We define the set of (finite) runs 

of RG, denoted RunsRG, to be the least subset of 
  satisfying the following. Firstly,  

and the end state of  is . Next, 
suppose  and the end state of  is . If 

,  then  and the 
end state of  is . By abuse of notation, we also 
denote the end state of a run  as .
 For a transition , we define 
its projection on RG ,  denoted , to be 

, where  if ; and   
otherwise. It is clear that . Extend  to 
runs of TS in the obvious way.
 We say a strategy f is region respecting iff for 

, if  and  are according to f and 

, then .

 The following observation is the key to proving 
decidability.
 Lemma 4 There exists a -winning strategy for , 
iff there exists a -winning strategy which is region 
respecting.
 Proof: Suppose f is a -winning strategy for . We 
inductively construct REf, a “representative” prefix-
closed subset of Runs(f), the set of (finite) runs of   
TS according to f, as follows. Firstly, . Now 
suppose  and  is an environment 
configuration. We will say that  is a region 
successor of  iff there exists  and  
such that . Let  
be the set of region successors of . We pick 

,  …,  and  for each 
, such that  for 

each . We now let  for each 
. One may see a need for appealing to 

the axiom of choice here. However the choice of ti 

and  can be made effectively with a bit of work. 
Next, suppose  and  is a system 
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configuration. Then for each ,  
where .
 It is clear that REf is indeed a prefix-closed subset 

of Runs(f). Now suppose that . Then from 
the construction of REf , it is easy to see that there is 

at most one  such that .
 We now define a strategy  as follows. Let 

 a n d  .  I f   i s  a  s y s t e m 

configuration and there exists  such that 
, then ; otherwise,  

. It is now straightforward to argue 

that  is a region respecting -winning strategy.
4.3 Decidability

From Lemma 4, it follows that to check if a 
-winning strategy exists, it suffices to determine if a   
-winning region respecting strategy (“rr-strategy” 

for short) exists.
 A strategy function is a function g which maps  
RunsRG to  such that, if  is in RunsRG with 

, then .
If , then ; If ,
then . Clearly, there is a 1-1 correspon-

dence between strategy functions and rr-strategies. 
We define the notion of a strategy function being 

-winning in the expected manner. It follows that 
there is also a 1-1 correspondence between 

-winning rr-strategies and -winning strategy 
functions.
 We can represent strategy functions as labeled 
infinite trees and design a tree automaton to 
recognize the set of winning rr-strategies. We first 
fix some basic terminology, let  be a finite set. A

-tree T is a prefix-closed subset of , elements 
of T are nodes with  being the root. The set 
of  successors  of  ,  denoted ,  i s 

. An infinite path π of T is a subset of 

T such that  and every node in π has exactly one 
successor in π. The direction of a node w, denoted 
dir(w), is defined as follows,  is a special 
element $ that is not in  . For , where ,
define . Let  be a finite alphabet of 

labels. A -labeled -tree is a pair , where T is 
a -tree and  is a function .
 A strategy tree is a -labeled TRRG-tree of 
the form  satisfying: (1) ; and 
(2) let . If , then for 

every successor  of , . If , 
then  for at least one successor  of .
 Clearly, there is a 1-1 correspondence between 
strategy trees and strategy functions. We now wish to 
construct a non-deterministic Büchi tree automaton 
which will run over -labeled TRRG-tree of the 
form . It will accept such a tree iff it 
is a strategy tree that corresponds to a -winning 
strategy function.
 In what follows, we set  and assume 
basic background concerning tree automata[23]. The 
tree automaton we wish to construct will of the form 

, where S is a finite set of states 
and , the set of initial states and , the 
set of accepting states viewed as a Büchi acceptance 
condition. The transition relation  will be a subset 
of , where n is the maximum out-

degree of the states of RG. We will assume the set of 
transitions of RG (that is TRRG) to be an ordered set.
 It will be convenient to view  as the intersection 
of three non-deterministic Büchi tree automata ,  
and . The automaton  will check if the -labeled 
RRG-tree is running over a strategy tree.  will 
check if the strategy represented is safe and  will 
check if every infinite run according to the strategy 
represented is a model of .
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 Let . A state in S1 will be of 
the form (dir, md, lb) with , giving the 
direction from which the node that the automaton is 
currently visiting was arrived at. The component md
{acc, rej} (“accept”, “reject”) will specify the current 
mode of the automaton, and  will specify the 
label the automaton expects the node it is visiting 
to have.  will be a singleton with the member 

. Now suppose  is a 
state, where  is the set of transitions in 
TRRG whose first component is . Then each move 
in  whose first component is s will be of the form 

. Moreover, the first component 
of each si will be . A typical move will be

  , 
where the automaton has guessed that the label on the 
node is visiting to be , but the actual label it reads is 

. On this node, it will enter the rej mode and guess 
 (this is irrelevant actually) and propagate a copy to 

all the successor nodes. Once it enters the rej mode, 
it will just keep propagating this mode. Naturally, 

.  Another typical 

move is  with 
 and  being a system region. In 

this case, there will be exactly two successor nodes 
and along the “0-direction”, the automaton guesses a 
label  and along the “1-direction” the label . If the 
end state of the current node is an environment state 
(or ), then the automaton will guess uniquely all 
the successor nodes to have the label . On the other 
hand, if the end state of the current node is an system 
state, then it could guess that only the “0-successor” 
node has label , or that only the “1-successor” node 
has label  or that both have labels  signifying that 
the strategy is at this stage non-deterministic.
 The automaton  will have a similar structure. It 

will also start in an accepting mode and ensure that 
along -paths (i.e. a path in which every node is 
labeled with ), no node is encountered whose end 
state is the region .
 It is well-known[24] that the LTL-formula  can be 
represented as a non-deterministic Büchi automaton  

 running over ω-strings over the alphabet 2AP. The 
third tree automaton  we construct will simulate  
along -paths and accept—using the accepting states 
of —iff every -path (more precisely, its induced 
LTL-model) is a model of .
 The detailed definitions of , ,  are tedious 
but straightforward and we omit them due to lack of 
space. The required tree automaton  is the intersec-
tion of , , . Clearly, the language of -labeled 
trees of the form (RunsRG, μ) accepted by  is non-
empty iff there is a -winning rr-strategy and this 
settles the first part of Theorem 1.
 As for the second part, assume that there exists 
a -winning strategy. Then by Lemma 4, there is a

-winning rr-strategy. Hence the language accepted 
by  is non-empty. By Rabin’s tree theorem[22],  
accepts a regular tree of the form (RunsRG, μ) which 
can then be effectively represented as a finite state 
transition system . This transition system can be 
viewed as a timed automaton. Each location will be 
a node of (RunsRG, μ) and it will be accompanied by 
a labeling function . The initial location will be  

with , whereas to all other 
locations  will assign a transition of RG of the form 

. From the region , we can recover a 

clock constraint  over the clocks and view 
it as the clock invariant associated with the location. 
To be precise, we must introduce an extra clock  to 

ensure that the system states are urgent.
 We convert each edge  of  to a transition as
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follows. Let . If , 

then there exists a unique transition 
 such that  for every  with

.  H e n c e  w e  c o n v e r t   t o 
. If , then we convert 

 to . It is not difficult to show that 
the parallel composition of  and  produces only 
safe runs which are models of .
 According to Vardi’s report[25], the complexity of

emptiness testing of  is . We have 
[24]. Again, it is not difficult 

to see that [21].
Where  is the number of locations of the plant;  
is the number of locations of the queue automaton 

; k is the total number of clock variables; c is 
the largest constant appearing across all the clock 
constraints and d is the total number of difference 
constraints.

5 Conclusion

We have formulated here a timed open system model 
to describe task arrival patterns and have studied 
the problem of synthesizing admission controllers 
that guarantee schedulability while meeting an LTL 
specification. Our work can be extended in a number 
of ways. One can consider using branching time 
requirements based on CTL or . Since Lemma 
4 will still go through, one can use the techniques 
developed in Kupferman’s report[26] to solve the 
resulting admission controller synthesis problems.
 In the present paper, we have assumed that our 
controller has read-only access to the clocks of the 
plant (and the clocks of the queue automaton). This is 
a justifiable assumption since the plant model merely 
describes the expected task arrival patterns and this 

information can be assumed to be available to the 
controller as well. Nevertheless, it will be worth 
exploring settings where the controller is endowed 
with its own clocks with pre-specified granularities. 
It will be equally interesting to study controllers 
that can interact with the ready queue, so that tasks 
can be rejected after they have been admitted to the 
ready queue. It will also be worthwhile considering 
settings with multi-processors, shared resources, and 
mixed-criticality tasks.
 In summary, using the controller synthesis 
paradigm to design admission policies in real time 
tasking environments promises to be a fruitful 
approach.
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