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Abstract In order to improve the performance of joint reconstruction of multi-sensor acceleration data from 
different wearable devices, a novel approach to jointly reconstruct based on distributed compressed sensing 

and the encoded data was sent to remote terminal. Then, with the spatiotemporal correlation of data from sensors, 
the joint reconstruction method based on Block Sparse Bayesian Learning (BSBL) was applied to decode the 
compressed data at remote terminal. At last, the wearable data from University of California-Berkeley database 
was analized. Experiments show that the proposed approach can gain better performance than the traditional 
joint reconstruction algorithms such as TMSBL and tMFOCUSS, and decode the compressed data accurately. 
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The proposed technique may be helpful for telemedicine application.
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Fig. 1 The DCS-based joint reconstruction system

framework of multi-sensor data of BAN
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Fig. 2 The acceleration signal reconstruction result of different MMV model algorithms
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Fig. 3 The acceleration signal reconstruction performance

comparison of different algorithms with different sampling rate
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