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Abstract In this work the thermal behavior of the LiNi1/3Co1/3Mn1/3O2 cathode material for soft packed lithium-ion 
power batteries during charging and discharging at different C-rate were conducted using the ARC (accelerating rate 
calorimeter) to provide an adiabatic environment. The overall heat generated by the lithium-ion battery during use, is 
partly reversible and partly irreversible, due to entropy change and joule heating, respectively. It indicates that the heating 
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generation of lithium-ion cell is decided by the C-rate of charge and discharge. The heat is smaller at low C-rate of charge 
and discharge. For example, the heating generation of battery increases 7.16  at 0.2C-rate and the entropy change heat is 
clearly embodied. The joule heating is more remarkable than the entropy change during charging and discharging at high 
C-rate. For instance, the heating generation of cell increased 25.63  at 1C-rate. The heat generation of charge is less than 
discharge at the same C-rate. The DC inter insistence of cell at the SOC (State of Charge) of 0 to 10% increases suddenly, 
so the heating generation power will reach its maximum in this period during discharge. It is valuable for the design of heat 
dissipation in lithium-ion battery thermal management.
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Table 1  The process of charge and discharge at 

different C-rate
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Fig. 1 Temperature as a function of time at 0.2 C
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Fig. 2 Temperature as a function of time at 0.2 C

discharge
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Fig. 3 The entropy coef cient vs SOC for 16 Ah

lithium-ion cell
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Fig. 4 Temperature rate as a function of temperature

at 0.2 C charge and discharge
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Fig. 5 The results of DC inter resistance at discharge

for 16 Ah lithium-ion cell
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Fig. 6 Temperature as a function of time at 1 C charge
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Fig. 7 Temperature as a function of time at 1 C discharge
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Fig. 8 Temperature rate as a function of SOC at 1 C

charge and discharge
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Fig. 9 Enthalpy and power as a function of

temperature at 1 C charge and discharge
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Table 2 The performance of cell compare at different 

C-rate
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