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Abstract In this paper, the convergence time required to achieve consensus of dynamic systems was studied under the 

uniform averaging model. In each time step, a node’s value was updated to some weighted average of its neighbors’ and 

its old values. The case was studied when the underlying network was dynamic. Our analysis results show that dynamic 

networks exhibit fast convergence behavior as long as the nodes’ degrees change gradually, even under very mild 

connectivity assumptions.
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1 Introduction

Many dynamic systems have been used to model the 
natural group behavior. Mathematically speaking, 
we consider the case when each individual or node 
in the set V maintains some real number, which can 
represent the opinion on some issue (e.g. preference 
in voting). In every time step, a node can collect 

the opinions of others and updates its opinion 
accordingly. Based on observations from many such 
systems[1-3], the values of all nodes converge to the 
consensus (a common opinion), after a small number 
of steps.

 DeGroot[4] models the consensus of opinions 
using weighted averaging model. This model has 
been widely studied, where the interactions of the 
nodes in a step are modeled in a network Gt (V,



Et). An edge {p, q} in Et indicates that node p and 
node q can collect each other’s number (opinion 
value) at time t. This weighed averaging model 
has applications in parallel computation[5], control 
theory[6-11] and ad-hoc networks[12].

Chan and Ning[13] studied what weighting 
strategies and what kind of networks can enable 
fast convergence to achieve consensus. They 
made a conjecture that in practical conditions, 
the averaging dynamic systems converged for the 
consensus logarithmically. In this paper, we consider 
a model which is essentially the same with the 
uniform averaging model[13], and the case when the 
underlying network topology is dynamic. Formally 
speaking, the networks Gts change over time. In 
general, we only assume the general structural 
properties of the networks, without specifying how 
they evolve.

In this paper, we prove that when degrees change 
mildly between two consecutive networks, the 
dynamic system converges logarithmically.

1.1 Related Work

Researchers have studied the special case of uniform 
averaging model with time-invariant topology[4].

If the underlying network is time-invariant and 
connected, Olshevsky and Tsitsiklis[14] showed that 
the convergence time for the uniform averaging 
model was O(n3), where n denoted the number of 
nodes.

Relatively, researchers know little about the 
convergence time in the cases of dynamic networks. 
Cao et al.[8] showed that the convergence time 
was nO(n) assuming some special structure in the 
networks. Olshevsky and Tsitsiklis[14] showed that 
the convergence time for the uniform averaging 
model was O(knkn), with the weak connectivity 

assumptions that the union of any k consecutive 
networks was connected. With the same weak 
connectivity assumption, Netic et al.[15] showed that 
the convergence time was O(kn2 ), for a class of 

the non-zeros weights involved in the algorithms. 
Chan and Ning considered the cases where the 

connectivity was characterized via the eigenvalue 
gap, and showed the polynomial convergence time 
with mild connectivity conditions[13]. In the same 
paper, they proved the logarithmic convergence for a 
special case named static weights model. 

Vicsek et al.[16] studied the interaction between 
particles using the weighted averaging model. The 
particles influence each other when they are close 
enough, and the convergent state is achieved when 
all particles travel in the same direction. Jadbabaie 
et al.[6] gave an explanation theoretically to such 
convergent behavior. Chazelle[17] studied a discrete 
version and showed that the convergence time was 
the power tower of n.

Directed networks and asynchronous updates[7]

were considered. Researchers have also studied the 
convergence under non-linear update rules[9-11].

1.2 Our Contribution

In this paper, we focus on the uniform averaging 
model, and the analysis between the convergence 
time and the topology of the evolving networks. 

Following the idea proposed by Chan and Ning[13],
we measured the connectivity of a network by 
the eigenvalue gap of its transition matrix. By an 
extension of Cheeger’s Inequality, it is shown that 
the constant eigenvalue gap implies the constant 
edge expansion of the network[13].

As the preparation for the main result, we firstly 
proved the logarithmical convergence for the special 



case which corresponds to the static weight model [13].
We harnessed an idea similar to the one used in the 
proof[13], and presented the proof under our model 
description.

For the uniform averaging model, we made an 
analysis of the conditions on the given network 
sequence such that the convergence was achieved 
fast. With the observation that the network in practice 
reflects the social situation of the individuals and 
evolves gradually, we are motivated to introduce the 
property of “mildly-changing” degrees, and finally, 

the property of “mildly-changing” degrees, and the 
network at any time point was well-connected (i.e. 
it had constant eigenvalue gap), then the dynamic 
system converged to the consensus in O(log n) time 
steps.

2 Preliminaries

2.1 Basic Notations

In this paper, we used  to denote the set of real 
numbers. For a vector x with entries from , its i-th
entry is referred to using x[i].

A simple undirected graph (or simply “network”) 
is usually denoted by G, and an edge between two 
nodes p, q in the graph is denoted by {p, q}.

2.2 Uniform Averaging Model

Since the model we will study is essentially the same 
with the uniform averaging model[13] introduced, we 
use the same model name. 

Imagine we are given n individuals and each of 
them holds a quantity (velocity/opinion), which can 
be represented by a number from 
at some time point is an n-dimensional vector from 

n consisting of each individual’s quantity. We 

t by vt.
At each time step, the individuals are supposed 

to form a network Gt, in which the nodes represent 

between two nodes. It is obvious that all Gts have the 
same number of nodes.

Definition 1  (Dynamic System: Uniform 
Averaging Model) Briefly speaking, a dynamic 
system indicates how to update the quantities 
associated with each member of a given group of 
individuals, according to some relation among these 
individuals.

In this paper, we consider the dynamic systems, in 

by the network Gt , and the updating process is 
represented by a product of a row stochastic matrix 
Pt and the vector consisting of the individuals’ 
quantities, where Pt , is the transition matrix of Gt , is 

      (1)
In the equation, In is the n×n identity matrix and 

Lt is the Laplacian of Gt :

       
(2)

and C t is a diagonal matrix, in which the i-th 
diagonal entry is denoted by ct [p

where 1 is a constant and the notation dt[p]
denotes the degree of node p in Gt.

When a dynamic system is given, it actually 
means that the strategy to calculate Ct from a given 
network Gt is valid. Then the process updating 

vt to vt 1



   (3)
Denote a sequence of networks as 

Generally we have s 0 and f  to 
simply denote .

In the remaining argument, we always suppose 
the dynamic system was already given (including 
the networks , Cts and constant  that defines 
the updating rules of vt). Then with an initial 
configuration v0 and a given sequence of network 
G, we want to consider when the corresponding 
updating process converges and try to derive an 
upper bound of the converging rate.

2.3 Matrix notations

As there are a lot of matrix operations involved 
in our argument, we introduced some notations of 
matrix operations in this section. 

For any matrix M from n×n

as the sum of the diagonal entries, i.e.

where M[i, i] denotes the i-th diagonal entry of the 
matrixM.

Next we introduced the 1 and 2 measures which 

The 1-measure of M

and the 2-measure of M

In particular, when M is of dimension n×1, i.e., 
M is a vector, another measure  which doubles 1 is 
also used a lot. That is: 

Note that in such case (M is a vector), it holds that

There are some useful facts about the 1 and 2

measures. Fact 1 states an important relationship 
between the 2-measure of the product of two 
matrices and product of the measures of the 
corresponding matrices, which is proved by Chazelle 
and Moreau[17, 18], fact 2 relates the 1-measure of a 
stochastic matrix with its smallest entry. Its proof is 
too trivial to be mentioned here.

The notation of stochastic matrix is needed for the 
introduction of facts. A matrix M is called stochastic 
if the entries sum up to 1, for every row vector in M.

Fact 1 For any stochastic matrix A and any 
matrix B, whose dimensions are compatible with A
such that AB

Based on fact 1, any stochastic matrix P has the 
property that 1(P) 1. Hence, it follows that for all 
ts,

(vt 1) 2(Ptvt) (vt)
Fact 2 Suppose P is a stochastic matrix so that 

in  all its entries, there are at least some number 0. 
Then, it holds that 

1(P) 1

3 Convergence for Consensus

3.1 Simple Case: When Ct Remains the Same

In this section, at first we consider a case which 
is similar to the static weight model introduced 
by Chan and Ning[13]. Specifically, we assume Ct

remains the same while the underlying network Gt

changes.



Theorem 1 Provide an initial configuration v0

and a sequence of networks , if all Cts used for 
computing Pts are the same, denoted by C, and the 
second largest (magnitude) eigenvalue of any Pt is 
bounded by a positive number 1, then for any
0, there is

such that

as long as t t*, where cmax denotes the largest 
element of C1/2 and  appears in the constraints for 
Ct’s, i.e., for any p and t, it always holds that

Proof Firstly, recall the facts that Pt is in the 
form of In CLt, and ct[p] 0 for all p. Being a 
stochastic matrix, Pt has the dominant eigenvalue 1
with right eigenvector 1 and left eigenvector

Mt as

Then Mt is symmetric and consequently can be 
diagonalized as 

where k 0, s are orthonormal eigenvectors and 
the eigenvalues are real. 

Remark 1 Here the superscript t over the 
eigenvalue  refers to the time point associated with 
the matrix Mt. To avoid confusing (with the “power”), 
we ignore this label t (or sometimes i) when it is 
clear from the context.

By the connectivity of Gt, stochasticity of Pt,
and other properties according to the spectral graph 
theory, we have 

and

for every t. Because all s are the same, we simply 
write u0 to avoid distinguishment.

Use e(i) to denote the n-dimensional vector in 
which the i-th coordinate is 1 while the others are all 
zeros. Then the production of the transition matrices 
from time 0 to time t 1 is

Focus on the product of Mis,

Each Mi can be rewritten as

denoted by . Then consider any vector x
from n. Next, we prove that 

Because uk(i)s are orthonormal unit vectors, they 
form actually an orthonormal basis. Thus,



3.2 General Case: When Ct Changes 

Chan and Ning[13] made a conjecture that in 
practical conditions, the averaging dynamic systems 
converged for the consensus logarithmically. In this 
section, we introduced a condition which was mild 
and appeared normally in practice, and then proved 
that under such a condition, the conjecture made by 
Chan and Ning[13] is true.

Condition 1 (mildly changing degree) Provide a 
sequence of networks , if 0, then for any time t
and node p, it holds that

then we say that the given network sequence  has
“mildly-changing” degrees.

Theorem 2 Provide an initial configuration 
v0 and a sequence of networks  which has 
“mildly-changing” degrees, and the second largest 
(magnitude) eigenvalue of P t is bounded by a 
positive number 1 for every t 0, then the 
dynamic system converges for the consensus at a rate 
of order O(log n).

Proof

and

To simplify the presentation, use the notation

and

Then, we rewrite P (t 1, 0)[:, j] as

The last equality holds because u0 is orthogonal to 

any uk(i) (k 0), which implies . Recall 
that u0 is an unit vector. Thus, we have

Note that,

and any entry of C is upper bounded by 1. Then we 
get

which implies

Hence,  goes below  , for t t* , which is



33

Note that for any i,

Thus, 1 is orthogonal to  for any i and k 0,
which implies DiFj 0 for any i and j. Then we have

is a vector along the direction 1, thus it decides the 

part  converges to 0. Note that

where . The (p,q)-th entry of   

and recall that 

Thus we have

Recall the “mildly-changing” property of the 
degrees, i.e. there exists 0, then

which implies that

for any 0, and t t*, where t* O(log n). The 
detailed analysis of t* is ignored since it is similar to 
the proof of theorem 1.

4 Conclusions

Chan and Ning[13] that concluded the logarithmic 
convergence for consensus of dynamic systems, 
under the “mildly-changing” degree condition. 
As in practice, the degree of a node reflects the 
personal social situation, which usually evolves 
gradually, the property of “mild-changing” degree 

understand the fast convergence of group behavior in 
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