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Abstract Scalespace play an important role in many computer vision tasks. Automatic scale selection is the foundation 

of multi-scale image analysis, but its performance is still very subjective and empirical. To automatically select the 

appropriate scale for a particular application, a scale selection model based on information theory was proposed in this 

paper. The proposed model utilizes the mutual information as a measuring criterion of similarity for the optimal scale 

selection in multi-scale analysis, with applications to the image denoising and segmentation. Firstly, the multi-scale image 

smoothing and denoising method based on the morphological operator was studied. This technique does not require the 

prior knowledge of the noise variance and can effectively eliminate the changes of illumination. Secondly, a clustering-

based unsupervised image segmentation algorithm was developed by recursively pruning the Huffman coding tree. The 

information-theoretical point of view. Finally, for the feasibility of the proposed algorithms, its theoretical properties were 

analyzed mathematically and its performance was tested through a series of experiments, which demonstrate that it yields 

the optimal scale for the developed image denoising and segmentation algorithms.
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Algorithm: i-De
Parameter:

Denote T as the number of iteration,

as a small threshold parameter.

Calculate at the initial scale t 1.
Do for t 2,…, T

1.Compute top-hat transformation as in (17);
2.Calculate mutual information I1 and I2 as follows:
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Algorithm: i-Se
Parameter:

Denote T as the number of maximum intensity bin
for an image u(x), S as the clustering operation.

Calculate I t
1(u, St u)at scale t T.

Do for t T 1,…,2,1

1. Calculate probability density ;
2. Sort pu(i) in descending order;
3. Combine the lowest two ordered probabilities,

and produce a weighted intensity as follows:

(22)
Now the probability of intensity k becomes:

(23)
where

(24)
And the following diagram illustrates our

clustering process based on Huffman coding strategy:

4. Calculate following mutual information:

(25)
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5. if and , then output selected NC t.
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Algorithm: i-Se (Simpli ed version)
Parameters:

Denote T as the number of maximum intensity bin
for an image u(x),

S as the clustering operation.

Calculate entropy Ht
(St u) at scale t T.

Do for t T 1,…,2,1

1. Calculate probability density ;
2. Sort pu(i) in descending order;
3. Combine the lowest two ordered probabilities and
produce a weighted intensity as in (22);
4. Calculate Shannon entropy as follows:

Ht Ht
(St u) (28)

5. If , then output selected NC t.
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Fig. 2. Mutual information of (20) and (21) for grains image

at various scales
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Fig. 3. Difference of mutual information for Fig. 2
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Fig. 1. Denoising for rice grains image
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Fig. 4. Denoising for vessel image
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Fig. 9. Mutual information of FCM algorithm for head

phantom image
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Fig. 10. Mutual information of i-Se algorithm for head

phantom image
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Fig. 11. Comparison of mutual information for FCM and i-Se
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Fig. 12. Comparison of the difference of mutual information

for FCM and i-Se algorithm
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Fig. 13. Segmentation for CT image
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Fig. 14. Comparison of mutual information for CT image using

FCM and i-Se algorithm
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Fig. 15. Comparison of the difference of mutual information

for CT image using FCM and i-Se algorithm
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Fig. 16. Segmentation for Lena image
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Fig. 17. Comparison of mutual information for Lena image

using FCM and i-Se algorithm.
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Fig. 18. Comparison of the difference of mutual information

for Lena image using FCM and i-Se algorithm
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