
JOURNAL OF INTEGRATION TECHNOLOGY

Vol. 2 No. 6

Nov. 2013

E-mail baoyg@ict.ac.cn

(100190)

PARD(Programmable Architecture of

Resourcing on-Demand)

Challenges and Opportunities of Building Datacenters for

Application’s Quality-of-Service

BAO Yungang
(Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China)

Abstract Datacenters have become the fundamental infrastructure of modern internet services such as searching, social

networking and online shopping. The resource utilization of typical datacenters, however, is quite low. The primary reason

of such low utilization is that datacenter operators have to upload resources to online services that are latency sensitive.

Co-locating multiple applications in a shared datacenter is an effective approach to improve resources utilization but can

result in degradation of application’s quality of service (QoS) because of interference between online services and other

background workloads. Therefore, QoS guarantee method in a shared datacenter becomes the key technology for improving

a programmable architecture for resourcing on-demand (PARD) was reviewed. The goal of PARD is to make hardware to

support resources management so that the QoS of key applications can be guaranteed while multiple applications execute

together in shared datacenters.

Keywords datacenter; resource utilization; Quality-of-Service (QoS); programmable architecture for resourcing on-

demand (PARD)

1

1.1

5 10

“

(Warehouse-scale Computer)”[1]

(Google)

[2] (Amazon)
EC2 50
[3] 30

24
30

[4]

(PC)

(

)

1.2

——

5 10
10 (1.5)[5]

10 15 40

()

(1)

TPC-C

20 [1] Google

Google
BigTable MapReduce TFS

(2)

1% [6]

Google
Gmail

(Street View)
Google

1100

 1

[6]

Amazon EC2 50
2013 38 [7] 50

1.3 (QoS)

(Quality of Service QoS)
1.3.1

2009
Bing

[8] 1 200 ms

2000 ms
3.8%

4.3%
[8]

Google
1.3.2

“

” 1
Web events.php

600 1200 CPU 10%
20% (

)

1200
(Long Tail Latency)

1200
MapReduce

CPU 100% web
() 1

addEventResult.php
I/O

——

“

”

1.3.3

1 Web Server

74

[9]

(1) / (Partition/Aggregate)
Google

TB

(fan-out)

Google Jeff Dean 2012 Berkeley [10]

1 ms 1%
1 s(99th-Percentile) 100

63%
1 s

(2) / (Dependent/Sequential)
Facebook Amazon

Facebook
150 [9]

1.4 Google

Google
Google

2 2006 Google
5000 6 CPU [1]

CPU
30%

“

(Bin-Packing)”[1]

2012 Google
12 24 (Intel

)[6]

3 2012 Google 1000
50% CPU 2006

4(b) 2013 1 3 Google 2
CPU 75%

Google Jeff Dean Luiz Barroso 2013
2 Communication of the ACM

2 2006 Google 5000 6 CPU
[1]

3 2012 Google 1000 24 CPU
[6]

75

“The Tail at Scale”[11]

CPU Cache

Dean Barroso [11] Google

[12] [13] [10]

[10]

5
(Streetview)
[6]

CPU 30%
(4(a))

10% 30%
Google 50% 60%

Amazon EC2

Amazon EC2

[15]

(On-Chip Datacenters)[16]

(

)

(Software Defined
Networking)

2

5 2012 Google [6]

(a) (b)
4 Google 2013 1 3 CPU 30%(a) CPU 75%(b)[14]

Software Defined
Networking(SDN) [17]

Google

[18] “ / ”

“ / ”

2.1

Xen[19] Linux
Container[20]

VM

[21]

Linux Container[20]

()

CPU I/
O Rice

Druschel [22] Resource Container
CPU

Druschel Cluster Container

[23]

(Page Coloring)[24]

(Partition)[25]

Cho [26] Page
Coloring Tam [27] Linux

DRAM DRAM
[28-30] Liu [31] Linux

DRAM
[32-34]

Cache

Mars Vachharajani
CAER[35]

Tang
[36] CiPE

Mars Bubble-Up[37]

(Bubble)

Tang [38]
ReQos

ReQoS

Google“ ”

50% 90%
Ad-hoc

CMU Onur Mutlu
[39-41]

77

Iyer [42]
CMP Qos

CQos
CQos

CQos
(1) (2)
(3) CQoS

Iyer CMP
Qos

[43] Iyer CMP
Qos

Herdrich [44]

(rate-based) CMP
/ Qos

/ Qos
Iyer

2.2

Dean MapReduce[45]

MapReduce
MapReduce

(backup task)

30 M/s 1 M/s MapReduce
backup task Backup task

TCP backup task

Dean [11] Google

[12] [13] [10]

[10] Kapoor [46]
Chronos

Chronos NIC
NIC

“ / ” “

/ ”

“

”[16]

2.3

(Computing Community Consortium)
2012 5

21
[19] “

(QoS)
”

3 PARD

()

78

21 ——

SDN(Software De ned Networking)
SDN

(1) (owid)
(2) (Data Plane)
(Control Plane) (3)

SDN 6
I/O

I/O

SDN ——

PARD(Programmable Architecture of Resourcing on-
Demand) PARD

SDA(Software De ned Architecture)

SDA
(1)
(2) ()

(3)

PARD

PARD

(

) PARD

7

QoS

6

79

oid(Object id)
(Control Table) oid

oid

Cache

OpenSPARC FPGA
PARD

4

1500
Google

2006 CPU
30% 2013

1%

PARD PARD

PARD

FPGA

[1] Hoelzle U, Barroso LA. The Datacenter as a Computer: an

Introduction to the Design of Warehouse-scale Machines [M].

Morgan and Claypool Publishers, 2009.

[2] Google throws open doors to its top-secret data center [EB/

OL]. http://www.wired.com/wiredenterprise/2012/10/ff-inside-

google-data-center/all/.

[3] Steven J, Nichols V. Amazon EC2 cloud is made up of almost

half-a-million Linux servers [EB/OL]. [2012-03-16]. http://

7

www.zdnet.com/blog/open-source/amazon-ec2-cloud-is-made-

up-of-almost-half-a-million-linux-servers/10620.

[4] Diamandis P, Kotler S. Abundance: The Future is Better Than

You Think [M]. Free Press, 2012.

[5] Patterson D, Hennessy J. Computer Architecture: A Quantitative

Approach [M]. Morgan Kaufmann, 2011.

[6] Kambadur M, Moseley T, Hank T, et al. Measuring interference

between live datacenter applications [C] // Proceedings of the

International Conference on High Performance Computing,

Networking, Storage and Analysis, 2011.

[7] Dignan L. Amazon’s AWS: $3.8 billion revenue in 2013 [EB/

OL]. [2013-01-07]. http://www.zdnet.com/amazons-aws-3-8-

billion-revenue-in-2013-says-analyst-7000009461/

[8] Schurman E, Brutlag J. The user and business impact of server

delays [C] // Proceedings of Velocity: Web Performance and

Operations Conference, 2009.

[9] Kapoor R, Porter G, Tewari M, et al. Chronos: predictable low

latency for data centerapplications [C] // Proceedings of the 3rd

ACM Symposium on Cloud Computing, 2012.

[10] Dean J. Achieving Rapid Response Times in Large Online

Services [Z]. Berkeley, 2012.

[11] Dean J, Barroso L. The tail at scale [J]. Communication of the

ACM, 2013, 56(2): 74-80.

[12] Cgroups [EB/OL]. http://en.wikipedia.org/wiki/Cgroups.

[13] Google cluster workload traces [EB/OL]. http://code.google.

com/p/googleclusterdata/.

[14] Barrosa L, Clidaras J, Holzle U. The Datacenter as a Computer:

An Introduction to the Design of Warehouse-Scale Machines [M].

Morgan and Claypool Publishers, 2013.

[15] Schad J, Dittrich J, Quiané-Ruiz JA. Runtime measurements

in the cloud: observing, analyzing, and reducing variance [J].

Proceedings of the VLDB Endowment, 2010, 3(1-2): 460-471.

[16] Kas M. Towards on-chip datacenters: a perspective on

general trends and on-chip particulars [J]. The Journal of

Supercomputing, 2011, 62(1): 214-226.

[Z]. In Open Networking Foundation White Paper. 2012.

[18] Deshane T, Dimatos D, Hamilton G, et al. Performance Isolation

of a Misbehaving Virtual Machine with Xen, VMware and

Solaris Containers [Z]. Technical Report, 2007.

[19] Barham P, Dragovic B, Fraser K, et al. Xen and the art of

virtualization [C] // Proceedings of the 19th ACM Symposium

on Operating Systems Principles, 2003: 164-177.

[20] Linux Container(LXC) [EB/OL]. http://lxc.sourceforge.net/.

[21] Menon A, Santos JR, Turner Y, et al. Diagnosing performance

overheads in the Xen virtual machine environment [C] //

Proceedings of the 1st ACM/USENIX International Conference

on Virtual Execution Environments, 2005: 13-23.

[22] Banga G, Druschel P, Mogul JC. Resource containers: a new facility

for resource management in server systems [C] // Proceedings

of the 3rd Symposium on Operating Systems Design and

Implementation, 1999: 45-58.

[23] Aron M, Druschel P, Zwaenepoel W. Cluster reserves: a

mechanism for resource management in cluster-based network

servers [C] // Proceedings of the Conference on Measurement

and Modeling of Computer Systems, 2000: 90-101.

[24] Lyneh W, Bray B, Flynn M. The effect of page allocation on

caches [C] // Proceedings of the 25th Annual International

Symposium, 1992: 222-225.

[25] Lin J, Lu Q, Ding X, et al. Gaining insights into multicore

cache partitioning: bridging the gap between simulation and

real systems [C] // IEEE 14th International Symposium on High

Performance Computer Architecture, 2008: 16-20.

[26] Cho S, Jin L. Managing distributed, shared L2 caches through

OS-level page allocation [C] // Proceedings of the IEEE/ACM

International Symposium on Microarchitecture, 2006: 455-465.

[27] Tam D, Azimi R, Soares L, et al. Managing shared L2 caches on

multicore systems in software [C] // Proceedings in Workshop on

the Interaction between Operating Systems and Computer, 2007.

[28] Jeong MK, Yoon DH, Sunwoo D, et al. Balancing DRAM locality

and parallelism in shared memory CMP systems [C] // IEEE 14th

International Symposium on High Performance Computer

Architecture, 2012.

[29] Muralidhara SP, Subramanian L, Mutlu OM, et al. Reducing

memory interference in multicore systems via application-

aware memory channel partitioning [C] // Proceedings of

the 44th Annual IEEE/ACM International Symposium on

Microarchitecture, 2011: 374-385.

[30] Mi W, Feng X, Xue J, et al. Software-hardware cooperative

DRAM bank partitioning for chip multiprocessors [J]. Network

and Parallel Computing, 2010, 6289: 329-343.

[31] Liu L, Cui Z, Xing M, et al. A software memory partition

approach for eliminating bank-level interference in multicore

systems [C] // Proceedings of the 21st International Conference

on Parallel Architectures and Compilation Techniques, 2012:

367-376.

[32] Wang XL, Wen X, Li YC, et al. Dynamic cache partitioning

based on hot page migration [J]. Frontiers of Computer Science,

2012, 6(4): 363-372.

[33] Chen H, Wang X, Wang Z, et al. DMM: a dynamic memory

mapping model for virtual machines [J]. Science China

Information Sciences, 2010, 53(5): 1097-1108.

[34] Jin X, Chen H, Wang X, et al. A simple cache partitioning

approach in a virtualized environment [C] // Proceedings of the

2009 IEEE International Symposium on Parallel and Distributed

Processing with Applications, 2009.

[35] Mars J, Vachharajani N, Hundt R, et al. Contention aware

execution: online contention detection and response [C] //

Proceedings of the 8th Annual IEEE/ACM International

Symposium on Code Generation and Optimization, 2010: 257-265.

[36] Mars J, Tang LJ, Soffa ML. Directly characterizing cross core

interference through contention synthesis [C] // Proceedings of the

6th International Conference on High Performance and Embedded

Architectures and Compilers, 2011: 167-176.

[37] Mars J, Tang LJ, Hundt R, et al. Bubble-up: increasing

utilization in modern warehouse scale computers via sensible

co-locations [C] // Proceedings of the 44th Annual IEEE/ACM

International Symposium on Microarchitecture, 2011: 248-259.

[38] Tang LJ, Mars J. ReQoS: Reactive static/dynamic compilation

for QoS in warehouse scale computers [C] // Proceedings of

the 18th International Conference on Architectural Support for

Programming Languages and Operating Systems, 2013.

[39] Mutlu O, Moscibroda T. Parallelism-aware batch scheduling:

Enhancing both performance and fairness of shared DRAM

systems [C] // Proceedings of 35th International Symposium on

Computer Architecture, 2008.

[40] Kim Y, Han D, Mutlu O, et al. ATLAS: A scalable and high-

performance scheduling algorithm for multiple memory

controllers [C] // Proceedings of 16th IEEE International

Symposium on High-Performance Computer Architecture, 2010: 1-12.

[41] Kim Y, Papamichael M, Mutlu O, et al. Thread cluster

memory scheduling: Exploiting differences in memory access

behavior [C] // Proceedings of the 2010 43rd Annual IEEE/

ACM International Symposium on Microarchitecture, 2010:

65-76.

[42] Iyer R. CQoS: a framework for enabling qos in shared caches of

cmp platforms [C] // Proceedings of 18th Annual International

Conference on Supercomputing, 2004.

[43] Iyer R, Zhao L, Guo F, et al. Reinhardt: QoS policies and

architecture for cache/memory in CMP platforms [C] //

Proceedings of the 2007 ACM International Conference on

Measurement and Modeling of Computer Systems, 2007: 25-36.

[44] Herdrich A, Illikkal R, Iyer RR, et al. Rate-based QoS techniques

for cache/memory in CMP platforms [C] // Proceedings of the

23rd International Conference on Supercomputing, 2009: 479-

488.

[45] Dean J, Ghemawat S. MapReduce: simplified data processing

on large clusters [J]. Communications of the ACM, 2008, 51(1):

107-113.

[46] Kapoor R, Porter G, Tewari M, et al. Chronos: predictable low

latency for data centerapplications [C] // Proceedings of the

Third ACM Symposium on Cloud Computing, 2012.

[47] Computing Community Consortium. 21st Century Computer

Architecture [Z]. White Paper, 2012.

