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Abstract Datacenters have become the fundamental infrastructure of modern internet services such as searching, social 

networking and online shopping. The resource utilization of typical datacenters, however, is quite low. The primary reason 

of such low utilization is that datacenter operators have to upload resources to online services that are latency sensitive. 

Co-locating multiple applications in a shared datacenter is an effective approach to improve resources utilization but can 

result in degradation of application’s quality of service (QoS) because of interference between online services and other 

background workloads. Therefore, QoS guarantee method in a shared datacenter becomes the key technology for improving 

a programmable architecture for resourcing on-demand (PARD) was reviewed. The goal of PARD is to make hardware to 

support resources management so that the QoS of key applications can be guaranteed while multiple applications execute 

together in shared datacenters. 
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