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摘 要 数据的快速增长，为我们提供了更多的信息，然而，也对传统信息获取技术提出了挑战。这篇论文提出了

MCMM算法，它是基于MapReduce的大规模数据分类模型的最小生成树（MST）的算法。它可以看做是介于传统的

KNN方法和基于聚类分类方法之间的模型，旨在克服这两种方法的不足并能处理大规模的数据。在这一模型中，训练集

作为有权重的无向完全图来处理。顶点是对象，两点之间边的权重是对象间的距离。这一距离，不同于欧几里得距离，

它是一个特定的距离度量。这样，可以找到图中最小生成树集，其中，图中每棵树代表一个类。为了降低时间复杂度，

提取了每棵树中最具代表性的点来代表该树。这些压缩了的点集，可以通过计算无标签对象和它们之间的距离，来进行

分类。MCMM模型基于MapReduce实现并且部署在Hadoop平台。该模型可扩展处理大规模的数据，是因为Hadoop支持

数据密集分布应用，并且这些应用可以和数以千计的节点和数据一起运作。另外，MapReduce 和Hadoop能在由商品机组

成的集群上很好的运行。MCMM模型使用云平台并且通过使用MapReduce 和Hadoop进行云计算是有益处的。实验采用

的数据集包括从UCI数据库得到的真实数据和一些模拟数据，实验使用了4000个集群。实验表明，MCMM模型在精确度

和扩展性上优于KNN和其他一些经常使用的基础分类方法。
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Abstract The Rapid growth of data has provided us with more information, yet challenges the traditional techniques 
to extract the useful knowledge. In this paper, MCMM, a Minimum spanning tree (MST) based Classification model 
for Massive data with MapReduce implementation is proposed. It can be viewed as an intermediate model between the 
traditional K nearest neighbor method and cluster based classifi cation method, aiming to overcome their disadvantages and 
cope with large amount of data. In this model, we treat the training set as weighted undirected complete graph. The vertices 
are objects and the weight of an edge between two objects is their distance, which could be a certain distance metric other 
than Euclidean distance. Then we fi nd a minimum spanning tree forest of the graph, in which each tree represents a class. 
In order to reduce the computing time, we extract the most representative points of each tree to represent that tree. The 
shrunk point sets can be used for classifi cation by computing the distances from unlabeled objects to them.MCMM model 
is implemented on Hadoop platform, using its MapReduce programming framework. Since Hadoop supports data intensive 
distributed applications and enables applications to work with thousands of nodes and petabytes of data, MCMM model 
is scalable to deal with massive data. In addition, MapReduce and Hadoop work well on cluster composed of commodity 
machines. Therefore there is no special need for particular hardware or architecture. This is actually the feature of cloud 
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1 Introduction

Classification is one of the most active research fields 
in data mining and machine learning, which is widely 
used in many application areas, including e-commerce, 
WWW, bioinformatics, scientific simulation, customer 
relationship management, business intelligence etc. With 
the development of hardware and software, it is becoming 
normal that the size of databases goes to Gigabytes or 
even larger. This raises new challenge to data mining 
techniques, including classifi cation and so on.
There are many techniques for classification. If full 
knowledge of underlying distribution is available, 
Bayes analysis yields an optimal decision procedure 
and minimum probability of error[4]. Sadly this kind of 
knowledge is always hard or impossible to get, in which 
cases many algorithms make use of distance or similarity 
among samples to classify them. The K nearest neighbor 
technique[4] falls into this category and is widely used in 
a lot of areas for its simplicity to handle and generally 
has high accuracy. However, KNN classifier faces the 
problem that it may decrease the precision because of 
the uneven density of training data. Also KNN has to 
compute the distances between an unlabeled object and 
every object in training set. When the size of data set 
goes to several gigabytes, which is common in today’s 
information explosive world, the time for classifying 
becomes unacceptable. The cluster based classification 
extends the basic idea of KNN[30]. It first performs 
clustering on the training set, and each cluster belongs to a 
particular class, and then uses certain kind of center point 
to represent each cluster. Classification stage is similar 
to KNN. The only difference is that the training set is 
composed of those clusters’ centers. Although this method 
reduces the total points of training set, it may lose too 

much information and is only suitable for convex group, 
which can be sufficiently substituted by a center point. 
What’s more, traditional clustering methods on huge 
amount of data consume too much time or even can’t be 
applied to massive data due to memory limitation.
In this paper, we present a classification model which 
tries to fi nd an intermediate model between the above two 
extremes, aiming at benefi ting from their advantages, and 
removing some of the drawbacks. One direct and simple 
way is to use a certain kind of subtree to represent each 
cluster which is obtained by clustering on training set, and 
then classify using idea similar to KNN. To achieve this 
goal, we firstly use minimum spanning tree (MST) for 
clustering, which is a simple and effective way compared 
with other traditional clustering method. Each cluster we 
get is actually a subtree, whose majority nodes are of the 
same class. Next step, we extract the most representative 
points of each subtree, and then get shrunk subtrees 
(actually they are subsets of nodes. We use subtree for 
convenience in the remaining text). By calculating the 
distances between an unlabeled object and each shrunk 
subtree, we can select the nearest subtree and classify the 
object into this subtree. The reason why shrunk subtrees 
are used is to reduce the quantity of training set which 
overwhelms KNN, yet without losing too much useful 
information. Using subtree is a vital feature when the 
cluster is not convex or of irregular shape.
Another notable feature of our classification model 
is that it can cope with a huge amount of data from 
modeling to classifi cation in an effective way, especially 
in the period of clustering, because we use MapReduce 
distributed programming framework, which has the 
ability to processe huge amounts of data in parallel, using 
hundreds of machines. We have done experiments on 
Downing 4000 cluster installed with Hadoop, an open 
source implementation of MapReduce. It shows that 

computing. MCMM model is used on cloud platform and could benefit from cloud computing by using Hadoop and 
MapReduce. Experiments had been carried out on several data sets including real world data from UCI repository and 
synthetic data, using Downing 4000 cluster, installed with Hadoop. The results show that MCMM model outperforms KNN 
and some other classifi cation methods on a general basis with respect to accuracy and scalability.

Keywords minimum spanning tree; classifi cation; MapReduce; cloud computing; graph-based mining



2 期 黄 鑫，等：基于最小生成树的大规模数据分类模型及其MapReduce实现 71

our model outperforms KNN and some other traditional 
classification methods both in accuracy and efficiency. 
And the nature of MapReduce’s distributed computing 
ability endows our model with good scalability. 
The rest part of this paper is organized as follows. 
Section 2 presents the background knowledge and related 
work. Section 3 describes our classification model in 
details. How to implement the model with MapReduce is 
presented in Section 4. Experiments and results are shown 
in Section 5, and we conclude the paper in Section 6. Pay 
attention that we may use minimum spanning tree and 
MST interchangeably in this paper, and they mean the 
same thing.

2 Background and Related Work

In this section, we give some background knowledge and 
a brief description of existing classification algorithms 
related to our model.
2.1 Hadoop and MapReduce

Hadoop is the Apache Software Foundation top-level 
project. It provides and supports the development 
of open source software that supplies a framework 
for the development of highly scalable distributed 
computing applications. The two fundamental parts of 
Hadoop Core are MapReduce framework, the cloud 
computing environment, and Hadoop Distributed File 
System (HDFS). It also provides other projects, such as 
HBase, Hadoop’s distributed, column-oriented database 
efficiently storing and handling semi-structured data as 
Google’s Big Table storage system, and PIG, a high level 
language for data analysis[32]. Hadoop is drawing more 
and more attention due to its simplicity and power for the 
development of distributed applications on cloud.
Hadoop MapReduce is a software framework for easily 
writing applications which process vast amounts of data 
(multi-terabyte data sets) in parallel on large clusters of 
commodity hardware (e.g. cloud platform) in a reliable, 
fault-tolerant manner[23]. It is based on two distinct steps. 
First step is map: the framework sequentially passes 
over the input fi le and output (key, value) pairs, in which 
individual input records can be processed in parallel. 
Second step is reduce: it fi rstly groups all values by key, 

then processes the values with the same key and outputs 
the final result. The framework shields the programmer 
from the details about the data distribution, replication, 
fault-tolerance, load balancing, etc. So the programmer 
only needs to provide two functions, a map and a reduce. 
Yet it’s powerful enough to process more complicated 
problems than just word counting. It can perform sorting, 
joining and many other operations on massive data in an 
efficient way[26]. Kang et al. present PEGASUS in [13], 
which is a tool for large scale graph mining applications. 
The key functions of PEGASUS are all implemented 
by MapReduce, including finding connect components, 
calculating pageranks, estimating diameter. Karloff et 
al. [15] prove that it is possible to find the minimum 
spanning tree of a huge graph by using MapReduce when 
traditional algorithms for computing MST consume 
intolerable time or exceeds the limitation of single 
machine’s memory.
2.2 Clustering Based Classifi cation

Clustering methods have been applied to supervised 
classifi cation problems[30, 17, 10]. In [20], Mui et al. illustrate 
building a cluster tree classification model using the 
k-means clustering method. The problem with their 
model is that only small numeric data could be classifi ed 
and every time only two sub-clusters are formed. In [10], 
Huang et al. proposed a new interactive approach to 
build a decision cluster classifi cation model, in which the 
k-prototypes clustering algorithm is used to partition the 
training data. But the above two methods are not adequate 
for high dimensional data with noise. In [18], a variable 
weighting k-means algorithm to build cluster-based 
classification models automatically is proposed, which 
can reduce the impact of noisy attributes by assigning 
smaller weights to them in clustering. However, all of 
the above methods adopt the basic idea of traditional 
k-means clustering to cluster. When data set goes beyond 
Giga-, Tera- or Peta- bytes, those methods become too 
much time-consuming or even can not be used because of 
single memory’s limitation. While in our proposed model, 
minimum spanning tree clustering can eliminate noise 
by cutting long edges with the number of nodes under 
a threshold. In addition, our MST clustering algorithm 
benefi ts from distributed system and parallel computing 
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by using MapReduce framework and Hadoop’s distributed 
fi le system (HDFS).
2.3 Minimum Spanning Tree for Clustering and   

 Classifi cation

Given an edge weighted graph, minimum spanning tree 
(MST) is a tree spanning all the vertices, whose total 
weight is minimal. It has been extensively researched and 
is widely used in many areas. Here we briefly state its 
usage in two branches of data mining.
MST for clustering Minimum spanning tree has been 
used for clustering in some applications[29, 24, 22, 9]. It is a 
variation in the family of clustering algorithms based on 
graph theory. The purpose of clustering algorithm based on 
graph theory is to take advantage of the simplicity of tree 
structure, which can facilitate efficient implementations 
of much more sophisticated clustering algorithms. It is 
widely used in the field of computer vision where the 
data are all in very high dimension space. In general, the 
idea of graph algorithm is as follows: fi rstly, it constructs 
a weighted graph upon the points in the X-dimensional 
space, with each point being a node, and the similarity/
distance value between two points being the weight of the 
edge connecting the two points. Then, it decomposes the 
graph into connected components (e.g. subtrees) in some 
way, and calls those components as clusters. As MST 
based clustering algorithm, it does not depend on detailed 
geometric shape of a cluster, it overcomes many of the 
problems faced by classical clustering algorithms. Figure 
1 shows that the tree can represent a non-convex cluster 
more accurately than a center.

 

Figure 1. White dots are objects. (a) Using the center (red dot) of these  
objects to represent it. (b) Using MST to represent this cluster

MST for classifi cation Minimum spanning tree can also 

be used for classifi cation. Piotr Juszczak et al. propose a 
minimum spanning tree based one-class classifi er in [11]. 
This classifier builds on the structure of the minimum 
spanning tree constructed on the target training set only. 
The classifi cation of a test object relies on its distance to 
the closest edge of that tree, hence the proposed method 
is an example of a distance-based one-class classifi er.
Our proposed model combines clustering based 
classifi cation with MST clustering and MST classifi cation. 
It aims to take advantage of them all. More importantly, 
we use MapReduce distributed programming framework, 
which enables our model to handle massive data 
effi ciently in a distributed way.

3 MST Classification Model for Massive  
 Data with MapReduce Framework

In this section, we present how to use MST clustering 
algorithm to fi nd clusters of the training set, shrink these 
clusters to reduce the computational complexity and apply 
these MST clusters to classifi cation.
3.1 Defi nitions

For a training set, objects from the same class tend to 
be spatially close in the data space. By clustering on the 
training data, objects in the same cluster have similar 
behaviors or properties and tend to be in the same class [10]. 
The distances between every two objects are calculated by 
a distance metric function, which is also used in the fi nal 
classification phase. There are many distance metrics, 
such as Euclidean distance, Cosine distance, Hamming 
distance, Manhattan distance, Tanimoto distance, etc. 
Usually the choice of distance metric has a great impact 
on the classifi cation accuracy.
Let X be a training set of n labeled objects. Each object 
in X has m attributes and a label suggesting its class. 
Without loss of generality, missing values of attributes are 
permitted.
Defi nition 1. A MST-clustering forest of X is a partition 
of X into k sets T1,...,Tk, where Ti is a minimum spanning 
tree connecting all the nodes within it, which satisfi es:  

Definition 2. The dominant class of a MST is the class 
that the majority of nodes are labeled to. And the tree is 
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labeled by dominant class.
Defi nition 3. The fi rst principal path of a MST is the path 
between two vertices that yields maximum length. The 
second principal path is obtained by excluding edges from 
the fi rst principal path and fi nding the longest path in the 
remain, and so on [11].
By using N principal paths, the tree representation of the 
data can therefore be simplified by considering only a 
few principle paths. Figure 2 shows the fi rst and second 
principal paths in a MST.

 

Figure 2. The fi rst principal path of the MST is marked by red solid 
line, and the second principal path is marked by orange dashed line

Definition 4.  The key points of a MST are the 
representative points in dense parts and backbone points. 
Here dense part means that all nodes in this part can reach 
each other within a predefined short distance and there 
are a variety of ways of choosing representative points, 
such as the one with most neighbors. Backbone points are 
those whose neighbors are all far from them.

By using key points, the tree representation of the data 
can therefore be simplified by considering only key 
points. Figure 3 shows the key points in a MST.
In general, a MST-clustering forest of train set can be 
used for classification. It is actually a cluster based 
classifi cation model, only the representation of a cluster 
is a tree. However for a training set of large quantity of 
objects, it is time-consuming to include all the nodes for 
classifi cation. So using some kind of way to shrink every 
MST is important. N principal paths or key points are the 
choices which we select in our proposed model.
3.2 Generating MST-clustering forest

This is the most challenging part in our modeling process, 
since the traditional algorithms for finding MST in a 
graph are not applicable when the numbers of edges 
are huge. We implement a distributed algorithm to find 
MST and then construct MST-clustering forest with 
MapReduce. The implementation details will be stated in 
section 4. This section can be further decomposed into the 
following parts:
Calculating similarity matrix For a training set X of n 
objects, its similarity matrix is: 

where dij is the distance between objects i and j. The 
function calculating dij is determined by the chosen 
distance metric.
Finding MST in the graph The cost of constructing 
a minimum spanning tree with classical sequential 
algorithms is O(mlog(n)) [21], where m is the number of 
edges in the graph, n is the number of vertices. More 
effi cient algorithms for constructing MST have also been 
extensively researched in [16, 14, 7]. These algorithms 
promise close to linear time complexity under different 
assumptions. However there is no guarantee that they 
can be efficient under any condition. With the increase 
of vertex number, sequential algorithm also faces the 
problem of memory limitation. To fi x this, many parallel 
or distributed algorithms are put forward [6, 2, 5]. But most 
of them are too complicated to implement due to too 

Figure 3.  (a)A,C,D,E,F are in the dense part of the tree because they 
can reach all their neighbors in a short distance; B or H is also a key 
point, because the dense part can be confi ned within {BH}. (b)G is a 
backbone point, since its neighbors are all far from it
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many message-passings and perform well only on special 
graph with regular structure[5]. Moreover, traditional 
parallel algorithms have specific requirements on the 
machine they run on, such as SMP or supercomputer, 
which is not always available. For a distributed algorithm 
running on traditional distributed system, the overhead 
of sending messages between processors, including 
time cost and bandwidth limitation, facilities and time 
for synchronization, may reduce the performance of 
algorithm severely. Furthermore, programmer should 
possess special knowledge when implementing parallel 
algorithm in the above environment. The most prevalent 
model for writing parallel algorithms is PRAM, in which 
an arbitrary number of processors, sharing an unboundedly 
large memory, operate synchronously on a shared input to 
produce some output. However, building a large computer 
with a large robust shared memory is rather difficult and 
actually fully shared memory machines with large numbers 
of processors do not exist today.
For all these reasons, there is still large room with respect 
to optimizing the algorithm of finding MST, especially 
distributed algorithms, as the data needed to be processed 
has been growing rapidly. It has been demonstrated that 
a large class of PRAM algorithms can be efficiently 
simulated via MapReduce. In our classification model, 
we adopt a novel distributed algorithm to generate MST 
using MapReduce framework which is presented in 

[15]. It can compute MST of a dense graph in only two 
rounds, as opposed to log n rounds needed in the standard 
PRAM model[15]. The strength of MapReduce lies in the 
fact that it uses both sequential and parallel computation. 
In addition, it runs on Hadoop cluster, which can be 
set up by commodity machines with the installation of 
Hadoop related software (actually it is a platform for 
cloud computing). Therefore there is no need for SMP, or 
supercomputer etc.
Denote the graph, vertex set, and edge set by G, V, and 
E. The procedure of generating MST can be described as 
follows [15]:
Step 1: partition the vertex set V into k equally sized 
subsets :  ,  wi th   for 

 and . For every pair (i,j), let  

be the edge set induced by vertex set , that is 
, and denote the resulting 

sub graph by ;

Step 2: for each of the  sub graphs Gi,j, compute the

unique minimum spanning tree Mi,j. Then let H be the 
graph consisting all of the edges present in Mi,j, so 

;
Step 3: compute M, the minimum spanning tree of H.
The correctness of the above algorithm is proved in [15].
Cutting long edges to get MST forest of the graph 
In the case of clustering with MST, in order to produce 

(a) There are objects of two classes and they have a clear boundary. If we cut the longest edge (on which we put a cross), we can get two clusters. Each 
of them is composed of objects from the same class. This is the fi nal result
(b) The objects from two classes have some overlap. So even there are only two classes, we can not build a model of only two MST clusters. More 
edges should be cut to form purer clusters, on which we put a cross. And the truly mixed area E can be removed. We get A;B;C;D four MST clusters 
fi nally

 Figure 4. Two classes of objects with and without clear boundary
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clusters after MST of the whole graph is generated, we 
can sort the edges of MST in descending order, and 
remove the first k−1 longest edges [29, 1]. The value of k 
should be preset and usually it is pretty diffi cult, because 
the number of classes is unknown.
However, in the case of classifi cation, k can be set to (C 
−1) initially, where C is the number of classes. At best, 
when each class is separated from each other by a clear 
boundary, the cutting phase can stop (see Figure 4(a)). 
However, in some cases, classes are mixed inherently, 
such as the case in Figure 4(b). In order to adapt our 
model to it, the cutting phase of our model is as follows:
Step 1: cut (k−1) longest edges to produce k subtrees, 
where k is the number of classes.
Step 2: for each subtree Ti, calculate its purity Pi and total 
count TCi .

If Pi< Purity, store Ti and remove it from clusters 
Else if TCi≤ IsolateNum, (it may be in an mixed 
area, which is no good for classifi cation), 
delete this MST ;
Else cut the longest edge, and go to the 
beginning of Step 2.

IsolateNum is a preset integer which denotes the vertex 
number of the smallest subtree. Usually it’s a very small 
value, i.e. one or two, for the purpose to eliminate truly 
mixed MST. Pi is calculated by Nmci / TCi, where Nmci is 
the number of objects with majority class in Ti, and Purity 
is a preset value to control the accuracy of the model. The 
larger Purity is set, the less non-majority class objects in 
a subtree will be. After the above operations, we get the 
MST forest of the original graph. Note that the total count 
of all MST forests’ vertices may be less than that of the 
graph because of the elimination of mixed clusters in Step 2.
3.3 Shrink MST in the MST-clustering forest

MST clustering forest can describe clustering structure 
of a graph, especially for a non-convex cluster. But 
sometimes it’s unnecessary to include all the vertices 
of the MSTs into the classification model. Some 
representative vertices could be enough. Otherwise, a 
model with complete vertices may reduce efficiency or 
have the problem of over fi tting to the training set. Thus 
we can adopt either one of the following two methods 
to shrink MST, with the goal of eliminating some 

unnecessary vertices.
Using N principal path The defi nition of N principal path 
has been given by defi nition 3. The tree representation of 
data can be simplifi ed by using a few principal paths. The 
algorithms 1 and 2 can be used to fi nd the fi rst principal 
path [3].
Let G=(V;E;w) be a graph. For a vertex v, the eccentricity 
of v is the maximum of the distance to any vertex in the 
graph, which can be computed by algorithm 1.

Lemma 1. Let r be any vertex in a tree T. If v is the 
farthest vertex to r, the eccentricity of v is the length of 
the longest path (fi rst principal path) of T.

 

Lemma 1 has been demonstrated in [1]. Algorithm 2 uses 
this property to fi nd the fi rst principal path of a tree.
The second principal path can be calculated by using 
Algorithm 2 after deleting the edges in fi rst principal path, 
and so on.
Using Key Points Apart from N principal paths policy, 
we also applied key points method (see definition 4) 
to our classification model. The following procedure 
describes how to fi nd key points in a tree.
Denote the tree of which we want to fi nd key points by T, 
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which has k vertices.
Step 1: label the T’s vertices with integers 1, 2 …k.
Step 2: collect the edge of the tree whose weight 
is smaller than a predefined value. These edges are 
organized by neighborhood relationship, and then we get 
several neighborhood lists. All vertices within a list are 
neighbors and close enough to each other.
Step 3: for each neighborhood list, we preserve the vertex 
with the smallest label.
Step 4: for edges whose weight is larger than the 
predefi ned value, we preserve both ends.
Figure 5 illustrates this process. Figure 5(a): fi rst label the 
vertex of a tree by integers, suppose there are 21 vertices, 
which are labeled by integer from 0 to 20. Figure 5(b): 
collect edges whose weights are smaller than a threshold, 
which are (0,1), (0,5), (2,7), (4,11), (4,19), (4,20), 
(10,14), (10,15), (10,16), (6,8), (8,12), (9,13), (13,17), 
(13,18), where an edge is presented by its two end nodes 
in a bracket. We put the node with smaller label in the 
front, just for consistency. These edges are organized by 
neighborhood relationship: (0,1,5), (2,7), (4,11,19,20), 
(10,14,15,16), (6,8,12), (9,13,17,18). Figure 5(c): within 
each neighborhood relationship, use the node with the 
smallest label is used to represent all its neighbors. Hence 
we get 0,2,4,6,9,10. Node 3 is also collected. Although 
it’s not collected in (b), it’s probably a representative node 
of the tree since all of their neighbors are far.
If an algorithm needs a preset value, usually this is a 
tricky part, such as the value of k in k-means clustering. 
Recall in step 2, a preset value is required. There is no 
strict standard on this setting, but we suggest it to be set 
to 1/2 to 1/3 of the largest edge weight initially and later 
to be adjusted to control the quantity of key points.
Note that the algorithm for finding key points proposed 
above may not be an optimal one. However it’s 
straightforward and can reflect the backbone of a tree 

to some extent. In addition, it can be implemented with 
MapReduce framework by simply adjusting the format of 
input fi le which represents the tree. For each subtree in the 
MST-clustering forest, either principal path or key points 
policy can be adopted to shrink it. In our classification 
model, we use both respectively and compare them. The 
result can be viewed in section 5.
3.4 Classifi cation

The basic idea of classification is inherited from KNN. 
First, we compute the distance between unlabeled object 
and each subtree in MST forest. These subtrees are 
different from the ones which are directly generated by 
MST clustering, because they have been processed by 
the shrinking policy described previously. Then we fi nd 
the shortest distance and corresponding subtree Ti. The 
unlabeled object is classifi ed to the class of Ti. Although 
the classification idea is straightforward, there are 
two parts needing further explanation: distance metric 
selection and distance defi nition.
In our model, we decide to use Euclidean distance for 
numerical attribute and Hamming distance for categorical 
distance, after comparisons with several other distance 
metrics, including Cosine distance, Manhattan distance 
and Tanimoto distance. The distance from a point to a 
tree can be defi ned as the smallest distance between the 
point and all edges of the tree [11]. However, this distance 
involves both the computing of projection and point-to-
point distance. Thus it is too complicated for practical use, 
especially when the dimension is very large. We consider 
the distance between x and tree Ti as the min (distance(x; 
xi)), where xi is a node of tree Ti. And in order to speed up 
the classifi cation, we implemented it with MapReduce.

4 MapReduce Implementation

In this section, the details of how to use MapReduce 

Figure 5. Process of fi nding key points
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framework to implement our model and classify objects are 
presented. Since we have described the related algorithms in 
previous sections, here we only focus on implementation.
4.1 Finding MST with MapReduce

This phase can be further divided into the following steps.
Step 1: Generating similarity matrix of the training set.
Step 2: Finding MST in the undirected complete graph 
corresponding to the similarity matrix.
The power of MapReduce framework lies in its ability of 
distributed computing. In order to benefi t from this, as we 
have illustrated in section 3, we should properly partition 
the input fi le, allowing each map to operate on a partition 
of more or less the same size. Considering a graph can be 
expressed by a matrix, we can partition the matrix by row 
and column to several blocks and control the size of each 
block by defi ning the total number of the blocks. Assume 
there are n objects in the training fi le and we labele them 
by node IDs from 0 to (n−1). The matrix below shows 
how each object is re-labeled with partition ID if the 
training set is partitioned into k parts.

The fi rst row and column of the matrix is the node IDs. They 
are divided into k groups, and these groups are separated by 
solid lines. Assume the intersection of a row and a column 
is an edge induced by the row node and column node. 
Then the solid lines between groups can partition the edges 
into k2 blocks, with the partition ID displayed in the above 
matrix. The graph we use is an undirected complete graph, 
so actually it is enough to consider the upper triangular part. 
Denote partition ID by PID, which is in the form of [Row 
Element][Column Element] as shown in the above figure, 
then edge eij will go to partition pid, if pid. [RowElement] 
≡ ik/n  and pid. [ColumnElement] ≡ jk/n . This can be 
accomplished by one map method.

(Inputkey, Inputvalue) : (ID, information)

Figure 6. Generating similarity matrix

 

Figure 7. Finding MST

When generating similarity matrix, the corresponding 
reduce method will calculate distances between nodes 
with the same PID. One PID is processed by one reduce.
(OutputKey, OutputV alue) : (PID, (StartNodeID 
EndNodeID Distance))
where (StartNodeID EndNodeID Distance) is actually 
the edge in the undirected complete graph, which will be 
used for fi nding MST in the following step (see Figure 6).
The next step is generating MST. It consists of two 
rounds. During the first round, map method will pass 
the key and value from previous job to the reduce 
after certain processing, and the corresponding reduce 
method will use Kruskal’s algorithm to fi nd MST within 
edges with the same PID. One PID is processed by one 
reduce. (OutputKey, OutputV alue) : (PID, (StartNodeID 
EndNodeID Distance)) where (StartNodeID EndNodeID 
Distance)) is actually the MST edge. In the second 
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round, map collects all the partial MSTs’ edges by 
setting the PID to the same value, and the reduce does 
the same thing as the fi rst round (see Figure 7).
4.2 Finding key points in the MST with MapReduce

 

Figure 8. Finding key points

Map
The input (key, value) pair is: (“MST”, (StartNodeID 
EndNodeID Distance)), which is the output of the 
previous MST generation job. The output (key, value)
pair is:
For the edge whose weight is smaller than a threshold:

Reduce
Only collect the key in the (key, List < value >) whose 
key is smaller than all values in List < value >. The 
complete job procedure can be seen in Figure 8.
4.3 Classifi cation with MapReduce

Map
The input fi le is training set after modeling, i.e. the shrunk 
MSTs, with the form of (nodeID nodeInformation&Class) 

per line. By using Hadoop API’s Text Input Format, 
input file is passed to map line by line. The distance 
between this node and unlabeled node is calculated by 
map. The output (key, value) pair is: (unlabeledNodeID 
distance&Class)
Reduce
According to MapReduce framework, the output of 
map with the same key is organized as a list, which is 
passed to a reduce method. The task of reduce method 
in classification is to select the smallest distance within 
a list and hence get the class for the unlabeled node. The 
complete job procedure can be seen in Figure 9.

5 Experiments and Results

In order to verify the accuracy and effectiveness of our 
proposed model, we have done experiments using data 
sets from UCI Machine Learning Repository [34]. A brief 
description of the data sets chosen is listed in Table 1. 
We try to select data sets of different type, such as with 
numerical attributes only, with categorical attributes 
only, with combined attributes, to get a comprehensive 
conclusion.

Figure 9. Classifi cation

Table 1 Data set information

Our experiments are completed on Dawning 4000 cluster, 
which is set up by 10 separate nodes. Each node has 
eight 2 GHz Dual Core AMD Opteron Processors and 8 G 

memory, running Linux. And we use the latest version of 
Hadoop package, hadoop-0.20.2.
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5.1 Choosing Distance Metric

Since our classification model can be regarded as an 
intermediate model between KNN and clustering based 
classifi cation method, whose accuracies both greatly rely 
on the choice of distance metric, it’s necessary to select a 
proper metric. Although most distance based algorithms 
use Euclidean distance, there is no guarantee that it 
performs well in every model. There has been a lot of 
study on distance metric learning [28, 25]. But for simplicity 

and practicability, we only choose several commonly used 
basic metrics for numerical attributes. We use Hamming 
distance for categorical attribute. The MST shrinking 
policy we choose is principal path. The result is given 
in Table 2. From above we can draw the conclusion that 
Euclidean distance outperforms others on a general basis, 
which can be chosen as the distance metric for our model. 
The entry which is labeled as bad means that it’s very low 
and there is no need to list it.

Table 2 Accuracy for diff erent distance metric

Table 3 Reduction rates

Table 4 Accuracy of MCMM and SMCMM

5.2 Comparison of Reduction Rates

By using the MST-shrinking methods we proposed in the 
previous section, we can signifi cantly reduce the number 
of samples used for classification compared with the 
case in KNN, which should include all of the samples 
in training set. Table 3 shows the reduction rate of our 

model compared with KNN. The fi rst column of the table 
indicates the shrinking policy. Each row lists the number 
of remaining training samples and the reduction rates (in 
brackets) in our models after shrinking policy. The row 
begins with “KNN” actually lists the number of points in 
the training set.

5.3 Accuracy of MCMM

In Table 4, the accuracies of MCMM on six different data 
sets are shown. The description of the six data sets and 
how they are partitioned to training and test set are given 
in Table 1. Note that MCMM adopts the idea of clustering 
based classifi cation method, which uses MST to clustering 
the whole training set fi rst and then cut long edges to form 
MST clustering forest. However, as mentioned above, 
at the best case all objects from the same class are in the 
same MST because they are closer to each other than to 
the ones of a different class. Since we know the class of 

every object in the training set, an alternative to building 
the model is constructing only one MST for all objects of 
the same class, and then perform the similar operation as 
MCMM. We call this mode SMCMM, meaning Separate 
MCMM. In Table 4, the row begins with “Separate MST” 
is the accuracy of SMCMM, and the row begins with 
“Global MST” is the accuracy of MCMM.
In Table 4, we can see that for shrinking MST, the policy 
of key points is better than principal path policy, but not 
significantly. When it comes to the way of constructing 
MST clustering forest, the accuracies of the two have no 
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signifi cant difference. This may be because that the data 
sets we choose are inherently convex, and the advantage 
of global MST clustering isn’t shown clearly. For 
comparison, we apply some other common classifi cation 
algorithms in Weka [33] to the six data sets, and result is 
shown in Table 5.

Figure 10. Horizontal axis lists the data set name (BA=Breast Cancer, 
CE=Car Evaluation, CA=Credit Approval), and vertical axis represents 
the accuracy

From the comparison of Table 4 and 5, we can draw 
the conclusion that our model is better and has no 
significant difference from the best algorithm which we 
adopt from weka regarding to accuracy. Note that, the 
BFTree algorithm and KNN outperform other traditional 
classification algorithms in weka in general, and our 
model has similar accuracy to it, if not better. From 
Figure 10 we can get a more direct view of comparison. 
However, BFTree is decision tree-based classification 
algorithm. When the size of training set is very large, the 
memory can not store the whole tree structure and hence 
can not be used for classifi cation, just as the case of “Letter 

Recognition” data set. And from Figure11 we can see that 
our model has greatly reduced the number of objects used 
for classifi cation compared to KNN. For example, in the 
case of “car evaluation”, 90% of the training objects have 
been removed in our model, yet it yields higher accuracy 
than KNN, which needs all of the training objects for 
classifi cation.
5.4 Testing on Large Data

So far, we have described the prototype of MCMM and 
presented some of its features by analyzing experiment 
results. However, we haven’t referred to one of its most 
notable features—the ability to deal with massive data in 
a distributed way by using MapReduce framework. In this 
part, we will discuss it in detail. 
To better test the scalability and effi ciency of our model 
on large data, we developed a data generator, as it can 
produce data of various sizes. And the format of data is 
similar to weka’s .arff fi le, which is one record per line, 
and each line contains the record’s all attributes and label, 
separated by commas. Here we generated data set record 
of six real types and one class attribute and there are four 
kinds of classes in all. For example:
1.647, 1.06, 1.78, 1.92, 1.57, 0.39, A
0.012, 0.278, 1.25, 0.453, 0.105, 0.843, B
First we show how the modeling time for MCMM 
changes as we add more machines.
We construct MCMM using a training set of 20000 
objects (equivalent to a complete graph with 200002 = 
4×108 edges) on 3, 7, 11 machines. Figure12 (a) shows 
that the time of constructing MCMM decreases as we 
add more machines. This benefits from the distributed 
computing of MapReduce framework and indicates our 
model’s scalability.
After the model is constructed, it then comes to its real 
function — classification. Figure 12(b) shows how the 
classifi cation time changes with the input size of test set 
using the MCMM model constructed above. In Figure12 

Table 5 Accuracy of algorithms from Weka

Figure 11. zzHorizontal axis lists the data set name (BA=Breast 
Cancer, CE=Car Evaluation, CA=Credit Approval), and vertical axis 
is the percentage of the object number in classification model against 
whole training set. KNN use all objects in the training set, hence the 
height of its rectangle is always 1
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(b) we also give the classification time of KNN using 
the same training set. Note that we also implement KNN 
with MapReduce and run it on our Hadoop cluster. It 
is actually similar to MCMM classification. The only 
difference is that KNN uses all the objects of training 
set. However, our MCMM classification uses a subset 
of training set. We can’t use traditional KNN algorithm, 
since the data used and produced by KNN is too large to 
fi t in a single machine’s memory (e.g. we try to classify 

the same test sets using Weka’s KNN algorithm, but 
always get “memory overflow” error). Figure 12 (b) 
shows the classification time of MCMM is much better 
than that of KNN, yet achieving nearly the same accuracy 
(Figure12(c)).
 

6 Conclusion

In this paper, we present MCMM, a minimum spanning 
tree-based classification model with MapReduce, which 
is an intermediate model between k nearest neighbor and 
cluster-based classification. MST of the training set is 
computed and by cutting long edges several subtrees are 
obtained, which are used to represent each cluster. We 
propose two policies, key points and N principal paths, 
to cut superfl uous edges of the subtrees. Benefi ting from 
this, a more concise model is built and hence classifi cation 
speeds up.
Another contribution is that we implement the model in 
a distributed way by using MapReduce framework. Thus 
our model is capable of dealing with huge amount of data 
in an efficient way. In addition, the classification phase 
also uses MapReduce. We run our model on a cluster of 
ten nodes, installed with the Hadoop package, to test on 
several data sets from UCI machine learning repository [34]. 
For comparison, we have also used weka [33] to classify the 
same data sets. The experiment results show that MCMM 
has advantage in classifying large data of multiple classes 
and high dimension, both in accuracy and time. The 
scalability of MCMM is proved by experimenting on 
synthetic graphs of different sizes.
A tree based model can be altered by cutting, adding or 
adjusting some of its edges, without complete information 
of original data set. So MCMM has the ability of 
incremental learning and hence may be suitable for stream 
mining. With rapid growth of stream data and its widely 
use in many areas, the application of MCMM to this fi eld 
deserves extensive study in the future.
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